Answer:
its c
ududhsihsisbishsusbusvsusbusbduusususuuusueuieieiejejdhebteybybeybsbysyneybdyndybbydbyeynydnnydndyjdyj8ggnxr
Step-by-step explanation:
fhjfjjgcmhmhcxmgkhfkhffhkhfkgfoyfkyftfutdutxjtxoyf
<h3>E
xplanation:</h3>
Replace cos^2(θ) with 1-sin^2(θ), and cot(θ) with cos(θ)/sin(θ).
cos^2(θ)cot^2(θ) = cot^2(θ) - cos^2(θ)
(1 -sin^2(θ))cot^2(θ) = . . . . . replace cos^2 with 1-sin^2
cot^2(θ) -sin^2(θ)·cos^2(θ)/sin^2(θ) = . . . . . replace cot with cos/sin
cot^2(θ) -cos^2(θ) = cot^2(θ) -cos^2(θ) . . . as desired
Answer:
4.5
Step-by-step explanation:
Answer:
2.21
Step-by-step explanation:
Given:
The figure.
To find:
The segment bisector of MN and value of MN.
Solution:
From the given figure it is clear that ray RP,i.e.,
is the segment bisector of MN because it divides segment MN in two equal parts.
Now,


Since,
is the segment bisector of MN, therefore,



Therefore, the length of MN is
.