Answer:
wire left for square = 100 - (14+14+4+4) cm
= (100 - 36) cm
= 64 cm
so
side of square = 64/4 = 16 cm
Using the binomial distribution, it is found that there is a 0.4096 = 40.96% probability that he answers exactly 1 question correctly in the last 4 questions.
<h3>What is the binomial distribution formula?</h3>
The formula is:


The parameters are:
- x is the number of successes.
- n is the number of trials.
- p is the probability of a success on a single trial.
Considering that there are 4 questions, and each has 5 choices, the parameters are given as follows:
n = 4, p = 1/5 = 0.2.
The probability that he answers exactly 1 question correctly in the last 4 questions is P(X = 1), hence:


0.4096 = 40.96% probability that he answers exactly 1 question correctly in the last 4 questions.
More can be learned about the binomial distribution at brainly.com/question/24863377
#SPJ1
Using a discrete probability distribution, it is found that:
a) There is a 0.3 = 30% probability that he will mow exactly 2 lawns on a randomly selected day.
b) There is a 0.8 = 80% probability that he will mow at least 1 lawn on a randomly selected day.
c) The expected value is of 1.3 lawns mowed on a randomly selected day.
<h3>What is the discrete probability distribution?</h3>
Researching the problem on the internet, it is found that the distribution for the number of lawns mowed on a randomly selected dayis given by:
Item a:
P(X = 2) = 0.3, hence, there is a 0.3 = 30% probability that he will mow exactly 2 lawns on a randomly selected day.
Item b:

There is a 0.8 = 80% probability that he will mow at least 1 lawn on a randomly selected day.
Item c:
The expected value of a discrete distribution is given by the <u>sum of each value multiplied by it's respective probability</u>, hence:
E(X) = 0(0.2) + 1(0.4) + 2(0.3) + 3(0.1) = 1.3.
The expected value is of 1.3 lawns mowed on a randomly selected day.
More can be learned about discrete probability distributions at brainly.com/question/24855677
Answer:
x = 4 ±9i
Step-by-step explanation:
x^2 - 8x + 97 = 0
Complete the square by subtracting 97 from each side
x^2 - 8x =- 97
Take the coefficient of x
-8 and divide by 2
-8/2 = -4
Then square it
(-4)^2 = 16
Add it to each side
x^2 - 8x + 16 = -97+16
(x-4)^2 = -81
Take the square root of each side
x-4 = ±sqrt(-81)
x-4 = ±9i
Add 4 to each side
x = 4 ±9i
Answer:

Step-by-step explanation:

==> simplify using the power of a power rule

Power of a power rule

explanation of rule : multiply the two powers and keep the base the same