A monomer is a small molecule that may become chemically bonded to other monomers to form a polymer.
In an experiment, the respiration rate of a goldfish is measured by placing the goldfish in cold water and then the respiration rate is measured again, the cold water is the independent variable.
<h3>What is an independent variable?</h3>
Independent variable is the variable of an experiment that is manipulated or changed while the dependent variable is the variable that is measured or recorded in an experiment.
According to this question, the respiration rate of a goldfish is measured. The goldfish is placed in cold water and then the respiration rate is measured again.
The cold water is the independent variable because it is the variable that is changed in terms of temperature difference.
Learn more about independent variable at: brainly.com/question/1479694
#SPJ1
Answer:
6.
The attached image contains the correct labels.
7.
a. 1
b. 6
c. 3
d. 10
e. 8
f. 4
g. 2
h. 7
i. 9
j. 5
Explanation:
7.
The entire cardiac cycle is as follows:
- Deoxygenated blood enters the right ventricle from the superior and inferior vena cava.
- The right atrium pumps the deoxygenated blood to the right ventricle.
- From the right ventricle, the deoxygenated blood moves to the lungs via the pulmonary artery.
- After gaseous exchange, the oxygenated blood returns to the heart into the left atrium via the pulmonary vein.
- From the left atrium, blood moves to the left ventricle.
- Oxygenated blood is pumped by the left ventricle into the aorta which supplies blood to all parts of the body.
- Deoxygenated blood, collected from the body again enters into the right atrium via the vana cava.
The simulations were consistent with actual DNA data obtained from a global public HIV database, developed and maintained by Los Alamos. The archive has more than 840,000 published HIV sequences for scientific research.
"We looked for special genetic patterns that we had seen in the simulations, and we can confirm that these patterns also hold for real data covering the entire epidemic," said Thomas Leitner, a computational biologist at Los Alamos and lead author of the study.
HIV is particularly interesting to study in this manner, Leitner noted, as the virus mutates rapidly and constantly within each infected individual. The changing "genetic signatures" of its code provide a path that researchers can follow in determining the origin and time frame of an infection, and the computer simulations are now proven to be successful in tracking and predicting the virus's movements through populations.
The rapid mutational capability of the virus is useful for the epidemiological sleuthing, but also is one of the features that makes it so difficult to tackle with a vaccine.
Leitner and Ethan Romero-Severson, the study's co-author and a Los Alamos theoretical biologist, used phylogenetic methods, examining evolutionary relationships in the virus's genetic code to evaluate how HIV is transmitted. They found that certain phylogenetic "family tree" patterns correlated to the DNA data from 955 pairs of people, in which the transmitter and recipient of the virus were known.