E and F are two events and that P(E)=0.3 and P(F|E)=0.5. Thus, P(E and F)=0.15
Bayes' theorem is transforming preceding probabilities into succeeding probabilities. It is based on the principle of conditional probability. Conditional probability is the possibility that an event will occur because it is dependent on another event.
P(F|E)=P(E and F)÷P(E)
It is given that P(E)=0.3,P(F|E)=0.5
Using Bayes' formula,
P(F|E)=P(E and F)÷P(E)
Rearranging the formula,
⇒P(E and F)=P(F|E)×P(E)
Substituting the given values in the formula, we get
⇒P(E and F)=0.5×0.3
⇒P(E and F)=0.15
∴The correct answer is 0.15.
If, E and F are two events and that P(E)=0.3 and P(F|E)=0.5. Thus, P(E and F)=0.15.
Learn more about Bayes' theorem on
brainly.com/question/17010130
#SPJ1
1/5 or 5/2 either one works!!
You can not see the problem
Answer:
139°
Step-by-step explanation:
these angles are supplementary angles, meaning that when added together, they equal 180°
so you just need to subtract 41 from 180 which gets you 139.