Answer:
Q7. 11.3 inches (3 s.f.)
Q8. 96.2 ft
Q9. 36.4cm
Step-by-step explanation:
Q7. Please see attached picture for full solution.
Q8. Let the length of a side of the square be x ft.
Applying Pythagoras' Theorem,

Thus, the perimeter of the square is

Q9. Equilateral triangles have 3 equal sides and each interior angle is 60°.
Since the perimeter of the equilateral triangle is 126cm,
length of each side= 126÷3 = 42 cm
The green line drawn in picture 3 is the altitude of the triangle.
Let the altitude of the triangle be x cm.
sin 60°= 
(to 3 s.f.)
Therefore, the length of the altitude of the triangle is 36.4cm.
Answer:
rise over run
Step-by-step explanation:
how much it goes up over how far it goes to the side
There's no if about it,

has a zero

so

is a factor. That's the special case of the Remainder Theorem; since

we'll get a remainder of zero when we divide

by

At this point we can just divide or we can try more little numbers in the function. It doesn't take too long to discover

too, so

is a factor too by the remainder theorem. I can find the third zero as well; but let's say that's out of range for most folks.
So far we have

where

is the zero we haven't guessed yet. Again we could divide

by

but just looking at the constant term we must have

so

We check

We usually talk about the zeros of a function and the roots of an equation; here we have a function

whose zeros are