1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dezoksy [38]
3 years ago
14

Happy veterans day everybody!!!

Mathematics
1 answer:
Serjik [45]3 years ago
4 0

Answer:

happy vets day

Step-by-step explanation:

You might be interested in
A group of eight friends (five girls and three boys) plans to watch a movie but they have only five tickets how many different c
nirvana33 [79]

1- all five girls

2- four girls and one boy

3. three girls and two boys

4. two girls and three boys.

4 combinations

6 0
3 years ago
What is the value of x? 14 17 27 34
zimovet [89]

Answer:

x=17

Step-by-step explanation:

see the attached figure to better understand the problem

In this problem Triangles BAE and DAE are congruent by SAS postulate

so

BE=DE

substitute the given values

3x-24=x+10

solve for x

3x-x=24+10

2x=34

x=17

8 0
3 years ago
Read 2 more answers
Integrate f(x,y,z)=x over the region in the first octant (x>0, y>0, z>0) above z=y^2 and below z=8-2x^2-y^2
Gemiola [76]
\begin{cases}z=y^2\\z=8-2x^2-y^2\end{cases}\implies y^2=8-2x^2-y^2\iff y^2+x^2=4

which means the intersection of the parabolic cylinder z=y^2 and paraboloid z=8-2x^2-y^2 is a circle of radius 2 centered at the origin.

So the integral can be represented in Cartesian coordinates by

\displaystyle\iiint_D x\,\mathrm dV=\int_{-2}^2\int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}}\int_{y^2}^{8-2x^2-y^2}x\,\mathrm dz\,\mathrm dy\,\mathrm dx

where D is the region between the two surfaces.

Converting to cylindrical coordinates will make this slightly easier to compute.

\begin{cases}x(r,\theta,\zeta)=r\cos\theta\\y(r,\theta,\zeta)=r\sin\theta\\z(r,\theta,\zeta)=\zeta\end{cases}
\implies\dfrac{\partial(x,y,z)}{\partial(r,\theta,\zeta)}=\begin{vmatrix}x_r&x_\theta&x_\zeta\\y_r&y_\theta&y_\zeta\\z_r&z_\theta&z_\zeta\end{vmatrix}=\begin{vmatrix}\cos\theta&-r\sin\theta&0\\\sin t&r\cos t&0\\0&0&1\end{vmatrix}=r

Letting E denote the same region in cylindrical coordinates, you have

\displaystyle\iiint_E r\cos\theta\left|\frac{\partial(x,y,z)}{\partial(r,\theta,\zeta)}\right|\,\mathrm dV=\int_0^{2\pi}\int_0^2\int_{r^2\sin^2\theta}^{8-r^2(1+\cos^2\theta)}r^2\cos\theta\,\mathrm d\zeta\,\mathrm dr\,\mathrm d\theta

In either case the integral reduces to 0.
3 0
3 years ago
Write (-32)^-2 as an expression without a negative exponent please
Yuliya22 [10]

Step-by-step explanation:

Hey there!

(-32)^-2 <em>Into</em><em> </em><em>posi</em><em>tive</em><em> </em><em>expo</em><em>nent</em><em>s</em><em>.</em>

<em>We</em><em> </em><em>generally</em><em> </em><em>law</em><em> </em><em>of</em><em> </em><em>nega</em><em>tive</em><em> </em><em>index</em><em>.</em>

<em><u>Exa</u></em><em><u>mple</u></em><em><u>;</u></em>

<em><u>{x}^{ - y}  =  \frac{1}{ {x}^{y} }</u></em>

<em><u>So</u></em><em><u>,</u></em><em> </em><em>let's </em><em>make</em><em> </em><em>it</em><em> </em><em>same</em><em> </em><em>as</em><em> </em><em>this</em><em>:</em>

<em>{ - 32}^{ - 2}  =  \frac{1}{  { - 32}^{ 2} }</em>

<em><u>Hope</u></em><em><u> </u></em><em><u>it</u></em><em><u> helps</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>

5 0
3 years ago
A rectangle has a length of x and a width of 5x^3+4-x^2. What is the polynomial that models the perimeter of the rectangle
sveticcg [70]

Answer:

L= x

And the width for this case is:

W= 5x^3 +4 -x^2

And we know that the perimeter is given by:

P= 2L +2W

And replacing we got:

P(x) = 2x +2(5x^3 +4 -x^2)= 2x +10x^3 +8 -2x^2

And symplifying we got:

P(x)= 10x^3 -2x^2 +2x+8

Step-by-step explanation:

For this problem we know that the lenght of the rectangle is given by:

L= x

And the width for this case is:

W= 5x^3 +4 -x^2

And we know that the perimeter is given by:

P= 2L +2W

And replacing we got:

P(x) = 2x +2(5x^3 +4 -x^2)= 2x +10x^3 +8 -2x^2

And symplifying we got:

P(x)= 10x^3 -2x^2 +2x+8

8 0
3 years ago
Other questions:
  • Factor q^2−1<br> A. (q-1)(q+1)<br><br> B. q-1<br><br> C. Can't Factor<br><br> D. (q-1)(q-1)
    7·1 answer
  • Of the following , which is closet to 4% of 73
    11·1 answer
  • (-5)^-4. a) 20. b)-625 c) 1/625. d. - 1 / 625
    10·1 answer
  • Help!! Identify the oblique asymptote of f(x) = quantity 2 x squared plus 3 x plus 8 over quantity x plus 3 . (1 point)
    11·1 answer
  • Find the midpoint of the line segment with the given endpoints. (-7, -1) and (3, -6)
    13·1 answer
  • Please help!! If the quantity 4 times x times y cubed plus 8 times x squared times y to the fifth power all over 2 times x times
    10·2 answers
  • There are 9 players on a baseball team. After the game each player high-fives once with everyone else. How many high-fives were
    15·1 answer
  • A cylindrical-shaped mug has a diameter of 8 centimeters and a height of 10 centimeters. What is the volume of the mug? Use 3.14
    8·1 answer
  • Help please this is due in couple minutes
    9·1 answer
  • Twelve people in a group are left-handed.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!