♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️


Add sides 3x


♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️
Answer:
All real numbers are solutions
Step-by-step explanation:
2x + 8 = 2(x + 4)
~Simplify right side
2x + 8 = 2x + 8
~Subtract 8 to both sides
2x = 2x
~Divide 2 to both sides
0 = 0
Best of Luck!
Answer:
The answer to the question provided is 10.

<u>Answer</u><u>:</u>
<u>
</u>
Hope you could get an idea from here.
Doubt clarification - use comment section.
Rewrite the limand as
(1 - sin(<em>x</em>)) / cot²(<em>x</em>) = (1 - sin(<em>x</em>)) / (cos²(<em>x</em>) / sin²(<em>x</em>))
… = ((1 - sin(<em>x</em>)) sin²(<em>x</em>)) / cos²(<em>x</em>)
Recall the Pythagorean identity,
sin²(<em>x</em>) + cos²(<em>x</em>) = 1
Then
(1 - sin(<em>x</em>)) / cot²(<em>x</em>) = ((1 - sin(<em>x</em>)) sin²(<em>x</em>)) / (1 - sin²(<em>x</em>))
Factorize the denominator; it's a difference of squares, so
1 - sin²(<em>x</em>) = (1 - sin(<em>x</em>)) (1 + sin(<em>x</em>))
Cancel the common factor of 1 - sin(<em>x</em>) in the numerator and denominator:
(1 - sin(<em>x</em>)) / cot²(<em>x</em>) = sin²(<em>x</em>) / (1 + sin(<em>x</em>))
Now the limand is continuous at <em>x</em> = <em>π</em>/2, so
