Answer:
Option D- frequency of the heterozygous qenotype
Explanation:
In the Hardy-Weinberg equilibrium , 2pq stands for the genotype frequency of heterozygotes (Aa) in a population at the state of equilibrium. dominant homozygotes (AA) is represented by the p-square and q- square represents the recessive homozygotes (aa) frequency. p represents the allele frequency of A Allele and q stands for the allele frequency of the allele a. Summation of the terms gives an equal to 1(100%). The sum of all of these terms is always equal to due to the fact that the 3 frequencies in the equation are the available or possible allele combinations.
Hardy-Weinberg is relevant for it helps us in comparison of a population's actual genetic structure as time goes on along with the genetic structure we are to get if really population was in Hardy-Weinberg equilibrium state that is population was not evolving.
Answer:
Sun
Explanation:
All energy comes from the sun.
<span>A cell with a large surface area or with microvilli (which increase surface area) are specialized for absorption. Many cells have different protein markers on their surface to accept certain specific hormones and allow them into the cell, like muscle cells reacting to adrenaline. Muscle cells are long and able to contract, allowing for overall muscle contraction and body movement. </span>
<span>I guess the hormone part I mentioned applies to chemicals; endocrine cells produce hormones that other cells would not. </span>
<span>For organelles, muscle cells don't have many of the organelles that other cells do because of their very specialized functions. </span>
<span>I hope this helps, it would literally take volumes of text books to answer this question completely.</span>
Most have eight but some have as many as twelve.
Answer:it reached carrying capacity. the environment couldn't hold both the goat and tortises
Explanation: