I'm going to assume this is over a horizontal distance. You know from Newton's Laws that F=ma --> a = F/m. You also know from your equations of linear motion that v^2=v0^2+2ad. Combining these two equations gives you v^2=v0^2+2(F/m)d. We can plug in the given values to get v^2=0^2+2(20/3)0.25. Solving for v we get v=1.82 m/s!
Answer:
i) 24.5 m/s
ii) 30,656 m
iii) 89,344 m
Explanation:
Desde una altura de 120 m se deja caer un cuerpo. Calcule a 2.5 s i) la velocidad que toma; ii) cuánto ha disminuido; iii) cuánto queda por hacer
i) Los parámetros dados son;
Altura inicial, s = 120 m
El tiempo en caída libre = 2.5 s
De la ecuación de caída libre, tenemos;
v = u + gt
Dónde:
u = Velocidad inicial = 0 m / s
g = Aceleración debida a la gravedad = 9.81 m / s²
t = Tiempo de caída libre = 2.5 s
Por lo tanto;
v = 0 + 9.8 × 2.5 = 24.5 m / s
ii) El nivel que el cuerpo ha alcanzado en 2.5 segundos está dado por la relación
s = u · t + 1/2 · g · t²
= 0 × 2.5 + 1/2 × 9.81 × 2.5² = 30.656 m
iii) La altura restante = 120 - 30.656 = 89.344 m.
Answer:
The electric current in the wire is 0.8 A
Explanation:
We solve this problem by applying the formula of the magnetic field generated at a distance by a long and straight conductor wire that carries electric current, as follows:

B= Magnetic field due to a straight and long wire that carries current
u= Free space permeability
I= Electrical current passing through the wire
a = Perpendicular distance from the wire to the point where the magnetic field is located
Magnetic Field Calculation
We cleared (I) of the formula (1):
Formula(2)

a =8cm=0.08m

We replace the known information in the formula (2)

I=0.8 A
Answer: The electric current in the wire is 0.8 A