Period is T=1/f
T=1/60 = 16.67 milliseconds
Answer: Got it!
Explanation: The water in a river flows uniformly at a constant speed of 2.50m/s between two parallel banks 80.0m apart. You are to deliver a package directly across the river, but you can only swim at 1.5m/s.
Answer:
a)
b) 
Explanation:
The complete question is written below:
An emu moving with constant acceleration covers the distance between two points that are 92 m apart in 6.5s. Its speed as it passes the second point is 14 m/s. What are (a) its speed at the first point and (b) its acceleration?
Since we are talking about constant acceleration, we can use the following equations:
(1)
(2)
Where:
is the distance between the two points
is the velocity of the emu at the first point
is the velocity of the emu at the second point
is the time it takes to the emu to cover the distance
is the emu's constant acceleration
Knowing this, let's begin with the answers:
<h2>a) Speed at the first point</h2>
In this situation wi will use equation (1):
(1)
Finding
:
(3)
(4)
(5)
<h2>
b) Emu's acceleration</h2>
Now we will substitute (5) in equation (2):
(6)
Finding
:
(7) This means the emu is decreasing its speed at a constant rate.
The constant angular acceleration (in rad/s2) of the centrifuge is 194.02 rad/s².
<h3> Constant angular acceleration</h3>
Apply the following kinematic equation;
ωf² = ωi² - 2αθ
where;
- ωf is the final angular velocity when the centrifuge stops = 0
- ωi is the initial angular velocity
- θ is angular displacement
- α is angular acceleration
ωi = 3400 rev/min x 2π rad/rev x 1 min/60s = 356.05 rad/s
θ = 52 rev x 2π rad/rev = 326.7 rad
0 = ωi² - 2αθ
α = ωi²/2θ
α = ( 356.05²) / (2 x 326.7)
α = 194.02 rad/s²
Thus, the constant angular acceleration (in rad/s2) of the centrifuge is 194.02 rad/s².
Learn more about angular acceleration here: brainly.com/question/25129606
#SPJ1
Answer:
d = 5.75m
Explanation:
Using snell's law, we have,
n₁ × sin(i) = n₂ × 2 × sin(r)
n1= refractive index of 1st medium= 1
n2= refractive index of 2nd medium = 1.33
r= angle of reflection
therefore,

Here,
i = 90 - θ





Therefore, the distance is
d = 3 + d₁
d = 3 + 2.75
d = 5.75m