Answer:
50 m
Explanation:
F = ma
10 N = (10 kg) a
a = 1 m/s²
Given:
v₀ = 0 m/s
a = 1 m/s²
t = 10 s
Find: Δx
Δx = v₀ t + ½ at²
Δx = (0 m/s) (10 s) + ½ (1 m/s²) (10 s)²
Δx = 50 m
The answer is : We’ll see the bell move, but we won’t hear it ring. This is because light can travel through vacuum but sound cannot. Sound waves are vibrations of particles in any media, so sound requires a medium to travel, and it cannot travel in a vacuum as there is no particles to vibrate.
Answer:
<u>We are given: </u>
initial velocity (u) = 0 m/s
final velocity (v) = 10 m/s
displacement (s) = 20 m
acceleration (a) = a m/s/s
<u>Solving for 'a'</u>
From the third equation of motion:
v² - u² = 2as
replacing the variables
(10)² - (0)² = 2(a)(20)
100 = 40a
a = 100 / 40
a = 2.5 m/s²
Answer:
finding Cepheid variable and measuring their periods.
Explanation:
This method is called finding Cepheid variable and measuring their periods.
Cepheid variable is actually a type of star that has a radial pulsation having a varying brightness and diameter. This change in brightness is very well defined having a period and amplitude.
A potent clear link between the luminosity and pulsation period of a Cepheid variable developed Cepheids as an important determinants of cosmic criteria for scaling galactic and extra galactic distances. Henrietta Swan Leavitt revealed this robust feature of conventional Cepheid in 1908 after observing thousands of variable stars in the Magellanic Clouds. This in fact turn, by making comparisons its established luminosity to its measured brightness, allows one to evaluate the distance to the star.