1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ValentinkaMS [17]
3 years ago
10

Direct, inverse, or neither?: xy = 15

Mathematics
1 answer:
timama [110]3 years ago
5 0

Answer:

Well, to be perfectly honest in my humble opinion, of course without offending anyone who thinks different from my point of view but also by looking into this matter in a different perspective and without condemning one's view and by trying to make it objectified and considering each and everyone's valid opinion, I honestly believe that I completely forgot what I was going to say.

You might be interested in
José has 3 brown socks, 5 blue socks, and 6 black socks
lukranit [14]

Answer:

independent

Step-by-step explanation:

, it has no effect on the number of red socks  so thewhen he draws out a sock the  event is not affected by the draw a blue sock or the bla ck sock or the brown sock

8 0
2 years ago
if a staircase rises 52° from the ground and a vertical distance of 12 yards. How much horizontal distance does the staircase co
3241004551 [841]
The horizontal distance will be found using the formula:
tan θ= opposite/adjacent
given that θ=52°
opposite= 12 yards
adjacent=x
hence
tan 52=12/x
x=12/tan 52
x=9.3754
the height is 9.375 yards
3 0
3 years ago
Which property is demonstrated in the equation below? a • 0 = 0 additive identity multiplicative identity multiplicative propert
Svetllana [295]
Zero commutative<span>property of multiplication. </span>The zero commutative property of multiplication states that when any number is multiplied by 0 the result is always zero
5 0
3 years ago
Implicit differentiation Please help
Anvisha [2.4K]

Answer:

y''(-1) =8

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-xy - 2y = -4

Rate of change of the tangent line at point (-1, 4)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Product Rule/Basic Power Rule]:                            -y - xy' - 2y' = 0
  2. [Algebra] Isolate <em>y'</em> terms:                                                                               -xy' - 2y' = y
  3. [Algebra] Factor <em>y'</em>:                                                                                       y'(-x - 2) = y
  4. [Algebra] Isolate <em>y'</em>:                                                                                         y' = \frac{y}{-x-2}
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-y}{x+2}

<u>Step 3: Find </u><em><u>y</u></em>

  1. Define equation:                    -xy - 2y = -4
  2. Factor <em>y</em>:                                 y(-x - 2) = -4
  3. Isolate <em>y</em>:                                 y = \frac{-4}{-x-2}
  4. Simplify:                                 y = \frac{4}{x+2}

<u>Step 4: Rewrite 1st Derivative</u>

  1. [Algebra] Substitute in <em>y</em>:                                                                               y' = \frac{-\frac{4}{x+2} }{x+2}
  2. [Algebra] Simplify:                                                                                         y' = \frac{-4}{(x+2)^2}

<u>Step 5: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{0(x+2)^2 - 8 \cdot 2(x + 2) \cdot 1}{[(x + 2)^2]^2}
  2. [Derivative] Simplify:                                                                                      y'' = \frac{8}{(x+2)^3}

<u>Step 6: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em>:                                                                               y''(-1) = \frac{8}{(-1+2)^3}
  2. [Algebra] Evaluate:                                                                                       y''(-1) =8
6 0
3 years ago
Read 2 more answers
Find cos B 52 b 65 a 39​
KonstantinChe [14]

Answer:

hi

Step-by-step explanation:

i think it is 52/65

hope it helps

have a nice day

5 0
3 years ago
Other questions:
  • 5/6k=-20 what is the correct answer ??
    11·2 answers
  • Which expression is equivalent to the expression shown? Need help
    10·1 answer
  • Describe the transformation f(x) = √x + 1 − 5 in words. The parent function f(x) = √x has been shifted 1 unit and 5 units.
    5·1 answer
  • Karen deposited $25 in the bank on Monday, $50 on Wednesday and $15 on Friday. On Saturday, she took out $40. Karen's original b
    6·1 answer
  • (10x2y - 8xy +6)-(?) = 5x2y + 2xy - 3
    6·1 answer
  • What is 20 divided by 35 as a fraction
    10·2 answers
  • 1. Which of the following represents the relationship shown in the table below?
    11·1 answer
  • PLEASE SOMEONE HELP ME OUT I DON'T UNDERSTAND HOW TO DO THIS ! I WILL GIVE BRAINLIEST FOR YOUR ANSWER
    5·2 answers
  • Select the correct answer.
    8·1 answer
  • An equation of a line perpendicular to the line represented by the equation y = -
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!