1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
siniylev [52]
3 years ago
6

Twice the sum of a number and 5 is equal to three times the difference of the number and 7. Find the number.

Mathematics
1 answer:
Alexandra [31]3 years ago
5 0

Step-by-step explanation:

Let the required number be x.

According to the given information:

2(x + 5) = 3(x - 7) \\  \\  \therefore \: 2x + 10 = 3x - 21 \\  \\   \therefore \: 10 + 21 = 3x -2x \\  \\ \therefore \: 31 = x \\  \\  \huge \red { \boxed{\therefore \: x = 31}}

Hence the required number is 31.

You might be interested in
Write an equation to find the missing side lenght. use ? for the number you do not know
Whitepunk [10]
There isn't enough information; however, let's say you were to find the missing side length of a rectangle. The perimeter is 52 and the two given side lengths are both 16. You would set up an equation to find the missing side lengths:
52 = 16 + 16 + ? + ?
52 = 32 + ? + ?
20 = ? + ?
Since this is a rectangle, the two other sides have to be equal. Therefore, you would divide the number by 2.
10 = ?
6 0
3 years ago
Solve the system of equations.<br><br><br><br> −2x+5y =−35<br> 7x+2y =25
Otrada [13]

Answer:

The equations have one solution at (5, -5).

Step-by-step explanation:

We are given a system of equations:

\displaystyle{\left \{ {{-2x+5y=-35} \atop {7x+2y=25}} \right.}

This system of equations can be solved in three different ways:

  1. Graphing the equations (method used)
  2. Substituting values into the equations
  3. Eliminating variables from the equations

<u>Graphing the Equations</u>

We need to solve each equation and place it in slope-intercept form first. Slope-intercept form is \text{y = mx + b}.

Equation 1 is -2x+5y = -35. We need to isolate y.

\displaystyle{-2x + 5y = -35}\\\\5y = 2x - 35\\\\\frac{5y}{5} = \frac{2x - 35}{5}\\\\y = \frac{2}{5}x - 7

Equation 1 is now y=\frac{2}{5}x-7.

Equation 2 also needs y to be isolated.

\displaystyle{7x+2y=25}\\\\2y=-7x+25\\\\\frac{2y}{2}=\frac{-7x+25}{2}\\\\y = -\frac{7}{2}x + \frac{25}{2}

Equation 2 is now y=-\frac{7}{2}x+\frac{25}{2}.

Now, we can graph both of these using a data table and plotting points on the graph. If the two lines intersect at a point, this is a solution for the system of equations.

The table below has unsolved y-values - we need to insert the value of x and solve for y and input these values in the table.

\begin{array}{|c|c|} \cline{1-2} \textbf{x} & \textbf{y} \\ \cline{1-2} 0 & a \\ \cline{1-2} 1 & b \\ \cline{1-2} 2 & c \\ \cline{1-2} 3 & d \\ \cline{1-2} 4 & e \\ \cline{1-2} 5 & f \\ \cline{1-2} \end{array}

\bullet \ \text{For x = 0,}

\displaystyle{y = \frac{2}{5}(0) - 7}\\\\y = 0 - 7\\\\y = -7

\bullet \ \text{For x = 1,}

\displaystyle{y=\frac{2}{5}(1)-7}\\\\y=\frac{2}{5}-7\\\\y = -\frac{33}{5}

\bullet \ \text{For x = 2,}

\displaystyle{y=\frac{2}{5}(2)-7}\\\\y = \frac{4}{5}-7\\\\y = -\frac{31}{5}

\bullet \ \text{For x = 3,}

\displaystyle{y=\frac{2}{5}(3)-7}\\\\y= \frac{6}{5}-7\\\\y=-\frac{29}{5}

\bullet \ \text{For x = 4,}

\displaystyle{y=\frac{2}{5}(4)-7}\\\\y = \frac{8}{5}-7\\\\y=-\frac{27}{5}

\bullet \ \text{For x = 5,}

\displaystyle{y=\frac{2}{5}(5)-7}\\\\y=2-7\\\\y=-5

Now, we can place these values in our table.

\begin{array}{|c|c|} \cline{1-2} \textbf{x} & \textbf{y} \\ \cline{1-2} 0 & -7 \\ \cline{1-2} 1 & -33/5 \\ \cline{1-2} 2 & -31/5 \\ \cline{1-2} 3 & -29/5 \\ \cline{1-2} 4 & -27/5 \\ \cline{1-2} 5 & -5 \\ \cline{1-2} \end{array}

As we can see in our table, the rate of decrease is -\frac{2}{5}. In case we need to determine more values, we can easily either replace x with a new value in the equation or just subtract -\frac{2}{5} from the previous value.

For Equation 2, we need to use the same process. Equation 2 has been resolved to be y=-\frac{7}{2}x+\frac{25}{2}. Therefore, we just use the same process as before to solve for the values.

\bullet \ \text{For x = 0,}

\displaystyle{y=-\frac{7}{2}(0)+\frac{25}{2}}\\\\y = 0 + \frac{25}{2}\\\\y = \frac{25}{2}

\bullet \ \text{For x = 1,}

\displaystyle{y=-\frac{7}{2}(1)+\frac{25}{2}}\\\\y = -\frac{7}{2} + \frac{25}{2}\\\\y = 9

\bullet \ \text{For x = 2,}

\displaystyle{y=-\frac{7}{2}(2)+\frac{25}{2}}\\\\y = -7+\frac{25}{2}\\\\y = \frac{11}{2}

\bullet \ \text{For x = 3,}

\displaystyle{y=-\frac{7}{2}(3)+\frac{25}{2}}\\\\y = -\frac{21}{2}+\frac{25}{2}\\\\y = 2

\bullet \ \text{For x = 4,}

\displaystyle{y=-\frac{7}{2}(4)+\frac{25}{2}}\\\\y=-14+\frac{25}{2}\\\\y = -\frac{3}{2}

\bullet \ \text{For x = 5,}

\displaystyle{y=-\frac{7}{2}(5)+\frac{25}{2}}\\\\y = -\frac{35}{2}+\frac{25}{2}\\\\y = -5

And now, we place these values into the table.

\begin{array}{|c|c|} \cline{1-2} \textbf{x} & \textbf{y} \\ \cline{1-2} 0 & 25/2 \\ \cline{1-2} 1 & 9 \\ \cline{1-2} 2 & 11/2 \\ \cline{1-2} 3 & 2 \\ \cline{1-2} 4 & -3/2 \\ \cline{1-2} 5 & -5 \\ \cline{1-2} \end{array}

When we compare our two tables, we can see that we have one similarity - the points are the same at x = 5.

Equation 1                  Equation 2

\begin{array}{|c|c|} \cline{1-2} \textbf{x} & \textbf{y} \\ \cline{1-2} 0 & -7 \\ \cline{1-2} 1 & -33/5 \\ \cline{1-2} 2 & -31/5 \\ \cline{1-2} 3 & -29/5 \\ \cline{1-2} 4 & -27/5 \\ \cline{1-2} 5 & -5 \\ \cline{1-2} \end{array}                 \begin{array}{|c|c|} \cline{1-2} \textbf{x} & \textbf{y} \\ \cline{1-2} 0 & 25/2 \\ \cline{1-2} 1 & 9 \\ \cline{1-2} 2 & 11/2 \\ \cline{1-2} 3 & 2 \\ \cline{1-2} 4 & -3/2 \\ \cline{1-2} 5 & -5 \\ \cline{1-2} \end{array}

Therefore, using this data, we have one solution at (5, -5).

4 0
3 years ago
Aaron wants to make a path to guide guest through the conservation area.He uses rolls of rope to make the path.He uses 3/4 of a
mel-nik [20]

Answer:

Aaron needs <u>2 more rolls</u> to complete the path.

Step-by-step explanation:

Given:

Total rolls Aaron has = 4

Part of path covered by using \frac{3}{4} of a roll = \frac{1}{8}

So, in order to find the number of rolls required to cover the complete path is given using the unitary method.

Rolls used for \frac{1}{8} of a path = \frac{3}{4}

Therefore, rolls used to cover the whole path is given by dividing the rolls used for one-eighth of the path and the path covered. This gives,

=\frac{3}{4}\div \frac{1}{8}

=\frac{3}{4}\times \frac{8}{1}

=\frac{3\times 8}{4\times 1}

=\frac{24}{4}

=6\ rolls

Now, rolls required to complete the path is 6. But Aaron has only 4 rolls.

So, he will need 6 - 4 = 2 rolls more to complete the path.

5 0
3 years ago
What is the product?
densk [106]

<em>The</em><em> </em><em>right</em><em> </em><em>answer</em><em> </em><em>is</em><em> </em><em>of</em><em> </em><em>option</em><em> </em><em>C</em>

<em>Please</em><em> </em><em>see</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em><em> </em><em>for</em><em> full</em><em> </em><em>solution</em>

<em>Hope</em><em> </em><em>it</em><em> </em><em>helps</em>

<em>Good</em><em> </em><em>luck</em><em> </em><em>on</em><em> </em><em>your</em><em> </em><em>assignment</em>

5 0
3 years ago
Read 2 more answers
If you were asked to perform enlargement, what<br> would you know about the scale factor?
kobusy [5.1K]

Answer:

You will multiply the scale factor by the vector

6 0
2 years ago
Other questions:
  • Can someone plz help me.
    8·1 answer
  • Which of the following terms best describes the graph of the exponential function given below? F(x)=9*((1)/(7))^(x)
    15·2 answers
  • Whats 67000000000000 x 10 to the number of 12?
    13·1 answer
  • Use a system of equations to solve this problem.
    13·1 answer
  • I need this question today. Pls help
    7·2 answers
  • 2,000 rupees to US dollars
    15·1 answer
  • Help with algebra please? Thank you.
    15·2 answers
  • Hospitals typically require backup generators to provide electricity in the event of a power outage. Assume that emergency backu
    6·1 answer
  • Colin's shopping basket has items costing $7.90,
    10·1 answer
  • Or
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!