Answer:
1.12M
Explanation:
Given parameters:
Volume of solution = 2.5L
Mass of Calcium phosphate = 600g
Unknown:
Concentration = ?
Solution:
Concentration is the number of moles of solute in a particular solution.
Now, we find the number of moles of the calcium phosphate from the given mass;
Formula of calcium phosphate = Ca₃PO₄
molar mass = 3(40) + 31 + 4(16) = 215g/mol
Number of moles of Ca₃PO₄ =
= 2.79moles
Now;
Concentration =
Concentration =
= 1.12M
Answer:
Solubility, Volatility, Viscosity and Surface Tension.
The outcome of the equation shows that there is no light energy proving that light energy was absorbed to get CH20; +602
Answer:
The Bronsted-Lowery acid is H2O
The Bronsted-Lowery base is CO3
The conjugate acid is HCO3
The conjugate base is OH
Explanation:
Molocules that lose a hydrogen in a reaction act as an acid, and those that recieve one act as a base.
Answer:
a) First-order.
b) 0.013 min⁻¹
c) 53.3 min.
d) 0.0142M
Explanation:
Hello,
In this case, on the attached document, we can notice the corresponding plot for each possible order of reaction. Thus, we should remember that in zeroth-order we plot the concentration of the reactant (SO2Cl2 ) versus the time, in first-order the natural logarithm of the concentration of the reactant (SO2Cl2 ) versus the time and in second-order reactions the inverse of the concentration of the reactant (SO2Cl2 ) versus the time.
a) In such a way, we realize the best fit is exhibited by the first-order model which shows a straight line (R=1) which has a slope of -0.0013 and an intercept of -2.3025 (natural logarithm of 0.1 which corresponds to the initial concentration). Therefore, the reaction has a first-order kinetics.
b) Since the slope is -0.0013 (take two random values), the rate constant is 0.013 min⁻¹:

c) Half life for first-order kinetics is computed by:

d) Here, we compute the concentration via the integrated rate law once 1500 minutes have passed:

Best regards.