Answer:
Basically, all phosphates except Sodium phosphates, Potassium phosphates and Ammonium phosphates are insoluble in water. That, of course, includes Magnesium phosphate.
Explanation:
Hope this helped!
Answer:

Explanation:
Hello,
In this case, since a change in science is widely known to be considered as a subtraction between the the final and initial values of two measured variables and is represented via Δ, here the final density is 5.43 g/mL and the initial one was 3.21 g/mL, therefore, the change in density is:

Best regards.
Wym kingdom? I dont get it
Considering the Charles' law, the gas would have a temperature of -109.2 C.
<h3>Charles' law</h3>
Finally, Charles' law establishes the relationship between the volume and temperature of a gas sample at constant pressure. This law says that the volume is directly proportional to the temperature of the gas. That is, if the temperature increases, the volume of the gas increases, while if the temperature of the gas decreases, the volume decreases.
Charles' law is expressed mathematically as:

If you want to study two different states, an initial state 1 and a final state 2, the following is true:

<h3>Temperature of the gas in this case</h3>
In this case, you know:
- P1= 1800 psi
- V1= 10 L
- T1= 20 C= 293 K (being 0 C= 273 K)
- P2= 1800 psi
- V2= 6 L
- T2= ?
You can see that the pressure remains constant, so you can apply Charles's law.
Replacing in the Charles's law:

Solving:


<u><em>T2=163.8 K= -109.2 C</em></u>
The gas would have a temperature of -109.2 C.
Learn more about Charles's law:
brainly.com/question/4147359?referrer=searchResults