Steps in constructing a circumscribed circle on a triangle using a just a compass and a straight edge.
1) construct a perpendicular bisector of one side of ΔRST.
2) construct another perpendicular bisector of another side of ΔRST
3) the point where the two bisectors intersect will be the center of the circle.
4) place the compass on the center point, adjust its length to ensure that any corner of the triangle will be reached and draw the circumscribed circle.
Answer:
D is the answer. There are 5 boxes, that each has 3 filled in.
The correct answer is: [D]: " 7.2 units" .
_______________________________________________________
Explanation:
________________________________________________________
Use the Pythagorean theorem:
a² + b² = c² ;
in which: "6 units" and "4 units" equal the lengths of the right angle (formed by the rectangle); and "c" is the length of the diagonal of the rectangle, or the "hypotenuse", of the right triangle formed by the rectangle; We wish to solve for "c" ;
_______________________________________________
6² + 4² = c² ; Solve for "c" ;
↔ c² = 6² + 4² ;
= (6*6) + (4*4) ;
= 36 + 16 ;
= 52 ;
c² = 52 ;
Take the "positive square root" of each side of the equation; to isolate "c" on one side of the equation; and to solve for "c" ;
√(c²) = √52 ;
c = √52 ;
At this point, we know the 7² = 49 ; 8² = 64 ; so, the answer is somewhere between "7" and "8" ; yet closer to "7" ; so among the answer choices given;
The correct answer is: [D]: " 7.2 units" .
_________________________________________
However, let use a calculator:
c = √52 = 7.2111025509279786 ; which rounds to "7.2" ;
which corresponds to:
___________________________________________
Answer choice: [C]: " 7.2 units" .
___________________________________________
Answer:
Jamie spent $39.36 in total.
Step-by-step explanation:
First, add the money spent for the sandwich, beverage, and fruit together.
4.75 + 1.25 + .56 = 6.56
Then, multiply the amount spent for one friend by six to find the total.
6.56 x 6 =39.36
I hope this helped you!
Factor out the cos<span>θ:
</span>cosθ (2sin<span>θ + sqrt3) = 0
</span>Therefore, the only ways this can happen are if either cosθ = 0 or if (2sin<span>θ + sqrt3) = 0
</span>The first case, cosθ = 0 only at θ <span>= pi/2, 3pi/2.
</span>The second case, <span>(2sin<span>θ + sqrt3) = 0 simplifies to:
</span></span>sin<span>θ = (-sqrt3)/2
</span><span><span>θ = 4pi/3, 5pi/3
</span></span><span><span>Therefore the answer is A.
</span></span>