Answer:
b
Step-by-step explanation:
Which set of ordered pairs represents a function? {(0, 1), (1, 3), (1, 5), (2, 8)} {(0, 0), (1, 2), (2, 6), (2, 8)} {(0, 0), (0,
11111nata11111 [884]
Answer: {(0, 2), (1, 4), (2, 6), (3, 6)}
Step-by-step explanation:
For a relation to be considered a function, each x-value needs to have one corresponding y-value--it cannot have more than 1.
Since all the other sets of ordered pairs feature points with two x-values with different y-values, the set above is the only function of the provided options.
Problem 13
10p+10q factors to 10(p+q). If we apply the distributive property, we can distribute the 10 to each term inside (p and q) to get
10(p+q) = (10 times p)+(10 times q) = 10*p + 10*q = 10p+10q
so we get the original expression again. Here 10 is the GCF of the two terms.
--------------------------------------------------------------
Plug p = 1 and q = 2 into the factored form
10*(p+q) = 10*(1+2) = 10*(3) = 30
As a check, let's plug those p,q values into the original expression
10*p+10*q = 10*1+10*2 = 10+20 = 30
We get the same output of 30