Answer:
then the diameter is 20
Step-by-step explanation:
Part A. You have the correct first and second derivative.
---------------------------------------------------------------------
Part B. You'll need to be more specific. What I would do is show how the quantity (-2x+1)^4 is always nonnegative. This is because x^4 = (x^2)^2 is always nonnegative. So (-2x+1)^4 >= 0. The coefficient -10a is either positive or negative depending on the value of 'a'. If a > 0, then -10a is negative. Making h ' (x) negative. So in this case, h(x) is monotonically decreasing always. On the flip side, if a < 0, then h ' (x) is monotonically increasing as h ' (x) is positive.
-------------------------------------------------------------
Part C. What this is saying is basically "if we change 'a' and/or 'b', then the extrema will NOT change". So is that the case? Let's find out
To find the relative extrema, aka local extrema, we plug in h ' (x) = 0
h ' (x) = -10a(-2x+1)^4
0 = -10a(-2x+1)^4
so either
-10a = 0 or (-2x+1)^4 = 0
The first part is all we care about. Solving for 'a' gets us a = 0.
But there's a problem. It's clearly stated that 'a' is nonzero. So in any other case, the value of 'a' doesn't lead to altering the path in terms of finding the extrema. We'll focus on solving (-2x+1)^4 = 0 for x. Also, the parameter b is nowhere to be found in h ' (x) so that's out as well.
You would put 8 where x is and -10 where y is and then you will do -10 to the second power, which you will get 100 and so you will get 104. The answer is
D) 104
Answer:
option A
12m/s
Step-by-step explanation:
Given in the question,
mass of object = 11kg
kinetic energy possess by = 792 joules
To find the velocity we use formula
v = 
Plug values in the formula
v = 
v = 
v = 
v= 12 m/s
From the figure, let the distance of point P from point A on line segment AB be x and let the angle opposite side a be M and the angle opposite side c be N.
Using pythagoras theorem,

and

Angle θ is given by

Given that a = 4 units, b = 5 units, and c = 9 units, thus

To maximixe angle θ, the differentiation of <span>θ with respect to x must be equal to zero.
i.e.

Given that x is a point on line segment AB, this means that x is a positive number less than 5.
Thus

Therefore, The distance from A of point P, so that </span>angle θ is maximum is 0.51 to two decimal places.