Given a complex number in the form:
![z= \rho [\cos \theta + i \sin \theta]](https://tex.z-dn.net/?f=z%3D%20%5Crho%20%5B%5Ccos%20%5Ctheta%20%2B%20i%20%5Csin%20%5Ctheta%5D)
The nth-power of this number,

, can be calculated as follows:
- the modulus of

is equal to the nth-power of the modulus of z, while the angle of

is equal to n multiplied the angle of z, so:
![z^n = \rho^n [\cos n\theta + i \sin n\theta ]](https://tex.z-dn.net/?f=z%5En%20%3D%20%5Crho%5En%20%5B%5Ccos%20n%5Ctheta%20%2B%20i%20%5Csin%20n%5Ctheta%20%5D)
In our case, n=3, so

is equal to
![z^3 = \rho^3 [\cos 3 \theta + i \sin 3 \theta ] = (5^3) [\cos (3 \cdot 330^{\circ}) + i \sin (3 \cdot 330^{\circ}) ]](https://tex.z-dn.net/?f=z%5E3%20%3D%20%5Crho%5E3%20%5B%5Ccos%203%20%5Ctheta%20%2B%20i%20%5Csin%203%20%5Ctheta%20%5D%20%3D%20%285%5E3%29%20%5B%5Ccos%20%283%20%5Ccdot%20330%5E%7B%5Ccirc%7D%29%20%2B%20i%20%5Csin%20%283%20%5Ccdot%20330%5E%7B%5Ccirc%7D%29%20%5D)
(1)
And since

and both sine and cosine are periodic in

, (1) becomes
Explanation:
Answer:
12.48 i think
The answer is 96.
The 3,a,b,& c cancel out because they equal 1.
Then your left with 48*2 which is 96.
48 * a * 3 * b * c * 2--------------------------3 * a * b * c
3/3 = 1 B/b = 1 C/c = 1
1 * 1 * 1 * 48 * 2 = 96
equation of line in slope intercept form is
y = mx + c
where m is slope.
putting point (0,5) in equation
5 = m × 0 + c
c = 5
now equation is
y = mx +c
y = (-1/2)x + 5
answer is option D
So the area of one triangle is (3.5 x 9 ) 31.5 , times that by 4 gives us 126 , now add that to 7 squared which is 126 + 49 . the answer is 175 cm^2<span />