Your answer is D you’re welcome!
Answer:
∠13 ≅ ∠16 - Vertical Angles Theorem
∠10 ≅ ∠14 - corresponding angles for parallel line p and q cut by the transversal s
∠5 ≅ ∠13 - corresponding angles for
parallel lines r and s cut by
the transversal q
∠1 ≅ ∠5 - corresponding angles for
parallel lines r and s cut by
the transversal q
Step-by-step explanation:
Linear Pair Theorem won't be used. When you look at the lines on the image you see that 13 and 16 are vertical from each other making there answer the vertical angles theorem. When you look at 10 and 14 you see that they lie on p and q with s going in the center of them. When you look at 5 and 13 they lie on s and r with q going down the middle of them. With 1 and 5 they also lie on p and q but r goes down the center of them instead of s.
A good place to start is to set
to y. That would mean we are looking for
to be an integer. Clearly,
, because if y were greater the part under the radical would be a negative, making the radical an imaginary number, not an integer. Also note that since
is a radical, it only outputs values from
, which means y is on the closed interval:
.
With that, we don't really have to consider y anymore, since we know the interval that
is on.
Now, we don't even have to find the x values. Note that only 11 perfect squares lie on the interval
, which means there are at most 11 numbers that x can be which make the radical an integer. All of the perfect squares are easily constructed. We can say that if k is an arbitrary integer between 0 and 11 then:

Which is strictly positive so we know for sure that all 11 numbers on the closed interval will yield a valid x that makes the radical an integer.
-151/120x -1 or 1\120 × (-151x -120)