Answer:
Since 10/9 is greater than 1, multiplying by 10/9 makes the value larger
Step-by-step explanation:
Step 1: Solve the fraction
10/9 = 1.1112
Therefore 10/9 > 1
Step 2: Multiple the fraction by itself
10/9 x 10/9 = 100/81
Convert fraction to decimals
100/81 = 1.2345678901.....
1.234567901 > 1.1112
Therefore 10/9 x 10/9 is bigger than 10/9
Answer: b
explanation: only choice B equals -9 like the given equation.
Answer:
B. (-7 +/-√33) / 4
Step-by-step explanation:
2x2 + 7x + 2 = 0
x = [-7 +/- √(7^2 - 4*2*2)] / 2*2
x = -7/4 +/- √(33) / 4
= (-7 +/-√33) / 4
Answer: 12
Step-by-step explanation:
2x + 8 = 3x - 4
In order to solve for x, we must isolate x. We can do this by moving all of the numbers with "x" in it to the left side of the equal side, and move everything else to the right of it!
Let's start off by subtracting 8 from both sides. Remember : what you do to one side, you must do it to the other.
2x + 8 - 8 = 3x - 4 - 8
Simplify!
2x = 3x - 12
Now, let's subtract 3x from both sides.
2x - 3x = 3x - 12 - 3x
Simplify!
-x = -12
Divide both sides by -1.
-x ÷ -1 = -12 ÷ -1
Simplify.
x = 12
Answer:
V = 34,13*π cubic units
Step-by-step explanation: See Annex
We find the common points of the two curves, solving the system of equations:
y² = 2*x x = 2*y ⇒ y = x/2
(x/2)² = 2*x
x²/4 = 2*x
x = 2*4 x = 8 and y = 8/2 y = 4
Then point P ( 8 ; 4 )
The other point Q is Q ( 0; 0)
From these two points, we get the integration limits for dy ( 0 , 4 )are the integration limits.
Now with the help of geogebra we have: In the annex segment ABCD is dy then
V = π *∫₀⁴ (R² - r² ) *dy = π *∫₀⁴ (2*y)² - (y²/2)² dy = π * ∫₀⁴ [(4y²) - y⁴/4 ] dy
V = π * [(4/3)y³ - (1/20)y⁵] |₀⁴
V = π * [ (4/3)*4³ - 0 - 1/20)*1024 + 0 )
V = π * [256/3 - 51,20]
V = 34,13*π cubic units