I assume that the numbers are supposed to be written as 7.14 x 10^10 for December and 3.21 x 10^10. The total mail delivered is the sum of these two numbers.
(7.14 x 10^10) + (3.21 x 10^10) = 1.035 x 10^11
Express √3 + i in polar form:
|√3 + i| = √((√3)² + 1²) = √4 = 2
arg(√3 + i) = arctan(1/√3) = π/6
Then
√3 + i = 2 (cos(π/6) + i sin(π/6))
By DeMoivre's theorem,
(√3 + i)³ = (2 (cos(π/6) + i sin(π/6)))³
… = 2³ (cos(3 • π/6) + i sin(3 • π/6))
… = 8 (cos(π/2) + i sin(π/2))
… = 8i
<span>The urn contains 2 purple balls and 4 white balls. The player pay $4 for start the game and get $1.5 for every ball drawn until one purple ball is drawn. The maximal revenue would be $7.5 when 4 white balls and 1 purple balls are drawn.
If the purple ball is p and white ball is w, t</span>he possible sample space of drawings are {p, wp, wwp, wwwp, wwwwp}
<span>1. Write down the probability distribution for the player earning
The player earning </span>for each event depends on the number of balls drawn subtracted the ticket price.<span>
p= 2/6
The player earnings would be: 1*$1.5 -$4= - $2.5
wp= (4*2)/(6*5) = 4/15
</span>The player earnings would be: 2*1.5- $4= - $1
wwp= (4*3*2)/(6*5*4)= 1/5
The player earnings would be: 3*$1.5 -$4= $0.5
wwwp= (4*3*2*2)/(6*5*4*3*2)= 2/15
The player earnings would be: 4*$1.5 -$4= $2
wwwwp= (4*3*2*2*1)/(6*5*4*3*2*1) = 1/15
The player earnings would be: 5*$1.5 -$4= $3.5
2. Find its expected value
The expected value would be:
chance of event * earning
You need to combine the 5 possible outcomes from the number 1 to get the total expected value.
Total expected value= (1/3 * - 2.5)+ (4/15*-1) + (1/5*0.5) + (2/15 *2) + ( 1/15 *3.5)=
(-12.5 -4 + 1.5 + 4 + 3.5) /15= -$7.5
This game basically a rip off.
The answer is 63. 9 times 7 is 63