1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BigorU [14]
3 years ago
14

More Algebra help pretty please! :P

Mathematics
1 answer:
Akimi4 [234]3 years ago
8 0
The answer would be the first option (2.2, -1.4) it is the closest to where the two meet. Can I plz have brainliest? i need it
You might be interested in
The equation y = kx represents a proportional relationship between x and y, where k is the constant of proportionality. For a mo
Natasha_Volkova [10]

Answer:

Step-by-step explanation:

for this equation

  d=st

we can represent s as d/t

we can represent t as d/s

and in real world we have a lot of this type of equations

some of them are,

 d=m/v  ( density = mass / volume )

 C = m.c  ( heat capacity = mass x specific heat )

7 0
3 years ago
What value of w makes the following equation true?<br> w+4 1 over 5 = 13 19 over 20
egoroff_w [7]

Answer:

13.15

Step-by-step explanation:

4 0
2 years ago
Five sixths divided by 3 equals what ​
rosijanka [135]

Answer: 5/18

<u>Do Keep Change Flip (KCF)</u>

Keep: 5/6

Change: ÷ into ×

Flip: 3/1 into 1/3

Your new problem should be: 5/6×1/3

<u>Multiply</u>

5/6×1/3=5/18

8 0
2 years ago
For any triangle ABC note down the sine and cos theorems ( sinA/a= sinB/b etc..)
SCORPION-xisa [38]

Answer:

Step-by-step explanation:

Law of sines is:

(sin A) / a = (sin B) / b = (sin C) / c

Law of cosines is:

c² = a² + b² − 2ab cos C

Note that a, b, and c are interchangeable, so long as the angle in the cosine corresponds to the side on the left of the equation (for example, angle C is opposite of side c).

Also, angles of a triangle add up to 180° or π.

(i) sin(B−C) / sin(B+C)

Since A+B+C = π, B+C = π−A:

sin(B−C) / sin(π−A)

Using angle shift property:

sin(B−C) / sin A

Using angle sum/difference identity:

(sin B cos C − cos B sin C) / sin A

Distribute:

(sin B cos C) / sin A − (cos B sin C) / sin A

From law of sines, sin B / sin A = b / a, and sin C / sin A = c / a.

(b/a) cos C − (c/a) cos B

From law of cosines:

c² = a² + b² − 2ab cos C

(c/a)² = 1 + (b/a)² − 2(b/a) cos C

2(b/a) cos C = 1 + (b/a)² − (c/a)²

(b/a) cos C = ½ + ½ (b/a)² − ½ (c/a)²

Similarly:

b² = a² + c² − 2ac cos B

(b/a)² = 1 + (c/a)² − 2(c/a) cos B

2(c/a) cos B = 1 + (c/a)² − (b/a)²

(c/a) cos B = ½ + ½ (c/a)² − ½ (b/a)²

Substituting:

[ ½ + ½ (b/a)² − ½ (c/a)² ] − [ ½ + ½ (c/a)² − ½ (b/a)² ]

½ + ½ (b/a)² − ½ (c/a)² − ½ − ½ (c/a)² + ½ (b/a)²

(b/a)² − (c/a)²

(b² − c²) / a²

(ii) a (cos B + cos C)

a cos B + a cos C

From law of cosines, we know:

b² = a² + c² − 2ac cos B

2ac cos B = a² + c² − b²

a cos B = 1/(2c) (a² + c² − b²)

Similarly:

c² = a² + b² − 2ab cos C

2ab cos C = a² + b² − c²

a cos C = 1/(2b) (a² + b² − c²)

Substituting:

1/(2c) (a² + c² − b²) + 1/(2b) (a² + b² − c²)

Common denominator:

1/(2bc) (a²b + bc² − b³) + 1/(2bc) (a²c + b²c − c³)

1/(2bc) (a²b + bc² − b³ + a²c + b²c − c³)

Rearrange:

1/(2bc) [a²b + a²c + bc² + b²c − (b³ + c³)]

Factor (use sum of cubes):

1/(2bc) [a² (b + c) + bc (b + c) − (b + c)(b² − bc + c²)]

(b + c)/(2bc) [a² + bc − (b² − bc + c²)]

(b + c)/(2bc) (a² + bc − b² + bc − c²)

(b + c)/(2bc) (2bc + a² − b² − c²)

Distribute:

(b + c)/(2bc) (2bc) + (b + c)/(2bc) (a² − b² − c²)

(b + c) + (b + c)/(2bc) (a² − b² − c²)

From law of cosines, we know:

a² = b² + c² − 2bc cos A

2bc cos A = b² + c² − a²

cos A = (b² + c² − a²) / (2bc)

-cos A = (a² − b² − c²) / (2bc)

Substituting:

(b + c) + (b + c)(-cos A)

(b + c)(1 − cos A)

From half angle formula, we can rewrite this as:

2(b + c) sin²(A/2)

(iii) (b + c) cos A + (a + c) cos B + (a + b) cos C

From law of cosines, we know:

cos A = (b² + c² − a²) / (2bc)

cos B = (a² + c² − b²) / (2ac)

cos C = (a² + b² − c²) / (2ab)

Substituting:

(b + c) (b² + c² − a²) / (2bc) + (a + c) (a² + c² − b²) / (2ac) + (a + b) (a² + b² − c²) / (2ab)

Common denominator:

(ab + ac) (b² + c² − a²) / (2abc) + (ab + bc) (a² + c² − b²) / (2abc) + (ac + bc) (a² + b² − c²) / (2abc)

[(ab + ac) (b² + c² − a²) + (ab + bc) (a² + c² − b²) + (ac + bc) (a² + b² − c²)] / (2abc)

We have to distribute, which is messy.  To keep things neat, let's do this one at a time.  First, let's look at the a² terms.

-a² (ab + ac) + a² (ab + bc) + a² (ac + bc)

a² (-ab − ac + ab + bc + ac + bc)

2a²bc

Repeating for the b² terms:

b² (ab + ac) − b² (ab + bc) + b² (ac + bc)

b² (ab + ac − ab − bc + ac + bc)

2ab²c

And the c² terms:

c² (ab + ac) + c² (ab + bc) − c² (ac + bc)

c² (ab + ac + ab + bc − ac − bc)

2abc²

Substituting:

(2a²bc + 2ab²c + 2abc²) / (2abc)

2abc (a + b + c) / (2abc)

a + b + c

8 0
3 years ago
Evaluate this exponential expression.
Levart [38]

Answer:

(-27)^\dfrac{2}{3} = 9

Step-by-step explanation:

Given that,

Asn expression : (-27)^\dfrac{2}{3}

We need to evaluate the above expression.

We know that, (-3)^3=-27

So,

(-27)^\dfrac{2}{3}=(-3)^{3\times \dfrac{2}{3}}

or

=(-3)^2\\\\=-3\times -3\\\\=9

So, the value of (-27)^\dfrac{2}{3} is 9. Hence, the correct option is (b).

8 0
3 years ago
Other questions:
  • A survey is given to every 4th grade student that walks into the school. What type of survey is this?
    5·1 answer
  • Pleaseeee help!!!!!!! I will mark you as brainlinest for correct answer!!!!!!!!!!
    10·1 answer
  • |-5| – 45 ÷ 3 <br> Explain how to solve
    14·1 answer
  • How many pairs of whole numbers have a sum of 110
    7·1 answer
  • Kitchen tiles cost £2.75 each<br> work out the total cost for 62 tiles
    9·2 answers
  • **URGENT**
    7·1 answer
  • Pleaze help me on the first 2
    10·2 answers
  • Calculate the surface area of this dollhouse—minus windows, doors, and the floor.
    5·1 answer
  • Solve the system: <br> X + 2y=28<br> Y= 3x
    5·1 answer
  • K12 Online school<br> Divide.<br><br> 5.6 ÷ 1,000
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!