He would have done 10+10+10 like for each stick then + How ever many ones there were and then we would have done the same for the other set . Soorry if I'm wrong
Let's solve this problem step-by-step.
STEP-BY-STEP EXPLANATION:
Let's first establish that triangle BCD is a right-angle triangle.
Therefore, we can use Pythagoras theorem to find BC and solve this problem. Pythagoras theorem is displayed below:
a^2 + b^2 = c^2
Where c = hypotenus of right-angle triangle
Where a and c = other two sides of triangle
Now we can solve the problem by substituting the values from the problem into the Pythagoras theorem as displayed below:
Let a = BC
b = DC = 24
c = DB = 26
a^2 + b^2 = c^2
a^2 + 24^2 = 26^2
a^2 = 26^2 - 24^2
a = square root of ( 26^2 - 24^2 )
a = square root of ( 676 - 576 )
a = square root of ( 100 )
a = 10
Therefore, as a = BC, BC = 10.
If we want to check our answer, we can substitute the value of ( a ) from our answer in conjunction with the values given in the problem into the Pythagoras theorem. If the left-hand side is equivalent to the right-hand side, then the answer must be correct as displayed below:
a = BC = 10
b = DC = 24
c = DB = 26
a^2 + b^2 = c^2
10^2 + 24^2 = 26^2
100 + 576 = 676
676 = 676
FINAL ANSWER:
Therefore, BC is equivalent to 10.
Please mark as brainliest if you found this helpful! :)
Thank you and have a lovely day! <3
Answer:
3 is to 12, 5 is to 50, 7 is to 14, and 11 is to 22.
Step-by-step explanation:
Answer: (4, -9)
<u>Step-by-step explanation:</u>
Use elimination method. Manipulate one (or both) equations to eliminate one of the variables and solve for the remaining variable. <em>I will be eliminating y</em>
6x + y = 15 → 2(6x + y = 15) → 12x + 2y = 30
-7x - 2y = -10 → 1(-7x + 2y = -10) → <u> -7x - 2y = -10</u>
5x = 20
x = 4
Next, replace "x" with "4" into either equation and solve for y.
6(4) + y = 15
24 + y = 15
y = -9
<u>Check:</u>
Plug in x = 4 and y = -9 into the other equation to verify it makes a true statement.
-7x - 2y = -10
-7(4) - 2(-9) = -10
-28 - -18 = -10
-28 + 18 = -10
-10 = -10 