1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Montano1993 [528]
3 years ago
12

The length of a rectangle is six times its width. If the rectangle is 600 yd^2 find its perimeter

Mathematics
1 answer:
vovangra [49]3 years ago
4 0

Answer:

8400 yd^2

Step-by-step explanation:

600x 6 because its six times

3600

L+L+W+W=p

8400 yd ^2

You might be interested in
PLEASE SOMEONE HELP ME OUT which would be the correct equations and how do i solve it? I'll Mark the brainlelist !
sp2606 [1]

Answer:

4 1/4

4 2/8

Step-by-step explanation:

1 7/8 + 2 3/8 = 4 1/4

4 1/4 = 4 2/8

7 0
4 years ago
Read 2 more answers
SOLVE FOR BRAINLIEST PLEASE
grandymaker [24]

<u>Answer</u>:

x = 20

<u>Explanation</u>:

all the interior angles in the triangle is 180°

<u>therefore</u>:

4x - 17° + 71° + 46° = 180°

4x + 100° = 180°

4x = 180° - 100°

4x = 80°

x = 20°

3 0
2 years ago
Read 2 more answers
Use undetermined coefficient to determine the solution of:y"-3y'+2y=2x+ex+2xex+4e3x​
Kitty [74]

First check the characteristic solution: the characteristic equation for this DE is

<em>r</em> ² - 3<em>r</em> + 2 = (<em>r</em> - 2) (<em>r</em> - 1) = 0

with roots <em>r</em> = 2 and <em>r</em> = 1, so the characteristic solution is

<em>y</em> (char.) = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>)

For the <em>ansatz</em> particular solution, we might first try

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> + <em>d</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

where <em>ax</em> + <em>b</em> corresponds to the 2<em>x</em> term on the right side, (<em>cx</em> + <em>d</em>) exp(<em>x</em>) corresponds to (1 + 2<em>x</em>) exp(<em>x</em>), and <em>e</em> exp(3<em>x</em>) corresponds to 4 exp(3<em>x</em>).

However, exp(<em>x</em>) is already accounted for in the characteristic solution, we multiply the second group by <em>x</em> :

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

Now take the derivatives of <em>y</em> (part.), substitute them into the DE, and solve for the coefficients.

<em>y'</em> (part.) = <em>a</em> + (2<em>cx</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

… = <em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

<em>y''</em> (part.) = (2<em>cx</em> + 2<em>c</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… = (<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

Substituting every relevant expression and simplifying reduces the equation to

(<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… - 3 [<em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)]

… +2 [(<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)]

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

… … …

2<em>ax</em> - 3<em>a</em> + 2<em>b</em> + (-2<em>cx</em> + 2<em>c</em> - <em>d</em>) exp(<em>x</em>) + 2<em>e</em> exp(3<em>x</em>)

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

Then, equating coefficients of corresponding terms on both sides, we have the system of equations,

<em>x</em> : 2<em>a</em> = 2

1 : -3<em>a</em> + 2<em>b</em> = 0

exp(<em>x</em>) : 2<em>c</em> - <em>d</em> = 1

<em>x</em> exp(<em>x</em>) : -2<em>c</em> = 2

exp(3<em>x</em>) : 2<em>e</em> = 4

Solving the system gives

<em>a</em> = 1, <em>b</em> = 3/2, <em>c</em> = -1, <em>d</em> = -3, <em>e</em> = 2

Then the general solution to the DE is

<em>y(x)</em> = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>) + <em>x</em> + 3/2 - (<em>x</em> ² + 3<em>x</em>) exp(<em>x</em>) + 2 exp(3<em>x</em>)

4 0
3 years ago
Select two ratios that are equivalent to <br> what are ratios are equivalent to 2:9
finlep [7]

Answer:

3,18    4,27

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
In a math class, 12 people reported their grades on the last test. Here are their responses:
Murrr4er [49]

Answer:

(a) 23, 35, 28, 33, 5, 12, 40, 25, 20, 18, 1, 16

1, 5, 12, 16, 18, 20 23, 25, 28, 33, 35, 40

n = 12 M = (20 + 23)/ 2 = 21.5

Q1 = (12 + 16) / 2 = 14 Q3 = (28 + 33) /2 = 30.5

(b) 22, 33, 25, 28, 5, 12, 35, 23, 20, 18, 1, 40, 16

1, 5, 12, 16, 18, 20 | 22 | 23, 25, 28, 33, 35, 40

n = 13 M = 22 Q1 = 14 Q3 = 30.5

(c) 20, 28, 23, 25, 3, 5, 33, 22, 18, 16, 40, 1, 35, 12

1, 3, 5, 12, 16, 18, 20, 22, 23, 25, 28, 33, 35, 40

n = 14 M = (20 + 22)/2 = 21 Q1 = 12 Q3 = 28

(d) 20, 28, 23, 25, 3, 5, 30, 22, 18, 40, 16, 35, 1, 33, 12

1, 3, 5, 12, 16, 18, 20 | 22 | 23, 25, 28, 30, 33, 35, 40

n = 15 M = 22 Q1 = 12 Q3 = 30

hope this helps :)

5 0
3 years ago
Other questions:
  • Christine runs 6 miles in 50 minutes. At the same rate, how many miles would she run in 35 minutes?
    15·1 answer
  • I don't know what to do or how to do it ​
    13·2 answers
  • In the game board shown below, the red squares are 1 inch long and 1 inch
    12·1 answer
  • Last year the robotics club had 30 members. This year the club has 24 members. Find the percent change in the number of members.
    7·2 answers
  • Function f is an exponential function. It predicts the value of a famous painting, in thousands of dollars, as a function of the
    8·1 answer
  • What answer is this If m = 70° and m = 30°, then m 2 =
    5·1 answer
  • Which situation can be represented by the inequality x&lt; 56?
    8·1 answer
  • Find side BC for the triangle shown (round to the nearest tenth).
    12·1 answer
  • 3 jars of paprika and 4 packets of sage have a total weight of 290 grams. 7 jars of paprika have a total weight of 210 grams . W
    8·1 answer
  • Complete the steps to solve the equation - 14x – 13 = -97.<br> - 14x – 13 = -97<br> =<br> - 14x =
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!