Hello!
The surface area is the area of all of the shapes on the net added up. First we will find the area of the two triangles.
A=0.5bh
A=0.5(3·6)
A=0.5(18)
A=9
Since there are two triangles we double this area, giving us 18.
Now let's find the length of the two side rectangles.
7(4)=28
28+28=56
Now to find the middle rectangle.
6(7)=42
Now we add up all of the area to find the surface area.
42+56+18=116
The surface area is 116 cm².
I hope this helps!
length = 4 yards and width = 3.5 yards
let width be w then length is 2w - 3
area = w(2w - 3) = 14 (rearrange in standard form )
2w² - 3w - 14 = 0 ← in standard form
(2w - 7 )(w + 2 ) = 0 ← in factored form
equate each factor to zero and solve for w
2w - 7 = 0 ⇒ w = 3.5
w + 2 = 0 ⇒ w = - 2
but w > 0, hence w = 3.5
width = 3.5 yards and length = (2 × 3.5 ) - 3 = 4 yards
Answer:
deez biscuts eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeehhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
Step-by-step explanation:
H. 135 meters
Work: 45 meters in 30 seconds 45/30= 1.5 so 90x1.5 = 135 meters
Answer:
(x^4-8)^45 /180 +c
Step-by-step explanation:
If u=x^4-8, then du=(4x^3-0)dx or du=4x^3 dx by power and constant rule.
If du=4x^3 dx, then du/4=x^3 dx. I just divided both sides by 4.
Now we are ready to make substitutions into our integral.
Int(x^3 (x^4-8)^44 dx)
Int(((x^4-8)^44 x^3 dx)
Int(u^44 du/4)
1/4 Int(u^44 dul
1/4 × (u^45 / 45 )+c
Put back in terms of x:
1/4 × (x^4-8)^45/45 +c
We could multiply those fractions
(x^4-8)^45 /180 +c