recall that for inverse functions, <u>the range of the original is the domain of the inverse</u> and othe other way around.
so f⁻¹(8) is f⁻¹(x) but making x = 8, so the domain value in this case for the inverse is 8, and that's going to give us something, but let's nevermind that.
since the domain value is 8 for the inverse, that means, the same 8, is a range for the original f(x).
meaning, "some value of x" on the original, gives us a range of 8, then let's use that 8 in the original, BUT not on "x", but on "y", or f(x).
![\bf f^{-1}(8)~\hspace{7em}\stackrel{f(x)}{8}=2x+5 \\\\[-0.35em] ~\dotfill\\\\ 8=2x+5\implies 3=2x\implies \boxed{\cfrac{3}{2}=x} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{original f(x)}}{\left(\stackrel{x}{\frac{3}{2}}~~,~~\stackrel{y}{8} \right)}~\hspace{7em} \stackrel{\textit{inverse }f^{-1}(x)}{\left(\stackrel{x}{8}~~,~~\stackrel{y}{\frac{3}{2}} \right)}~\hfill f^{-1}(8)=\cfrac{3}{2}](https://tex.z-dn.net/?f=%5Cbf%20f%5E%7B-1%7D%288%29~%5Chspace%7B7em%7D%5Cstackrel%7Bf%28x%29%7D%7B8%7D%3D2x%2B5%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%208%3D2x%2B5%5Cimplies%203%3D2x%5Cimplies%20%5Cboxed%7B%5Ccfrac%7B3%7D%7B2%7D%3Dx%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Boriginal%20f%28x%29%7D%7D%7B%5Cleft%28%5Cstackrel%7Bx%7D%7B%5Cfrac%7B3%7D%7B2%7D%7D~~%2C~~%5Cstackrel%7By%7D%7B8%7D%20%5Cright%29%7D~%5Chspace%7B7em%7D%20%5Cstackrel%7B%5Ctextit%7Binverse%20%7Df%5E%7B-1%7D%28x%29%7D%7B%5Cleft%28%5Cstackrel%7Bx%7D%7B8%7D~~%2C~~%5Cstackrel%7By%7D%7B%5Cfrac%7B3%7D%7B2%7D%7D%20%5Cright%29%7D~%5Chfill%20f%5E%7B-1%7D%288%29%3D%5Ccfrac%7B3%7D%7B2%7D)
so notice how the values swap places for the inverses, one's domain, is the other's range.
Answer:
parallel yan po sagotttttt
Answer:
1/9
Step-by-step explanation:
first, u need 9 ---> 1/3
then u need 8 ---> 1/3 also
Multiply them and get...1/9
Answer:
Step-by-step explanation:
Answer:
18np
Step-by-step explanation:
3 × n × p × 6
18 × n × p
18n × p
18np
<h2 /><h2 /><h2 /><h2>please follow me</h2>