Answer:

Explanation:
As we know that the power emitted by the source is given as

now we know that

now we know that energy density is given as

now we have


intensity is defined as

now we have
[/tex]
now we have



here we have



now we have


Answer:
33.73 lb to the left
Explanation:
You need to exert a force with the same magnitude, but opposite direction. You can visualize it in this way: When you push an object, the object will follow your path, but if there is another person opposing the force you are exerting, the object will just not move. If the force that the other person exerts were higher, then the object would move in the opposite direction. So, you need them to have the same magnitude.
Answer:
a= 2.7 m/s^2
Explanation:
acceleration: a
speed: V
Vf = final speed
Vi= initial speed (initial = beginning)
100 km/hour --> m/s
divide the speed value by 3.6
100/3.6= 27.8 m/s




a= 2.7 m/s^2
Answer:
Because of height and lower atmospheric pressure.
Explanation:
Atmospheric pressure affects aerodynamic drag, lower pressure means less drag. At the altitude of Denver the air has lower pressure, this allows baseball players to hit balls further away.
Another aerodynamic effect is the Magnus effect. This effect causes spinning objects to curve their flightpath, which is what curveball pitchers do. A lower atmospheric pressure decreases the curving of the ball's trajectory.
We know, a = v/t
Here, a = 5 m/s²
v = 50 km/h= 13.88 m/s
Substitute their values into the expression:
5 = 13.88 / t
t = 13.88/5
t = 2.78 sec
Now, we know, v = d/t
13.88 = d/2.78
d = 13.88 * 2.78
d = 38.53 meter
In short, Your Answers would be:
i) It will take 2.78 sec
ii) It will travel for 38.53 m after a brakes applied.
Hope this helps!