Answer:
Explanation:
We shall apply Doppler's effect to solve the problem .
Formula for apparent frequency for a source of sound approaching an observer is as follows .
f₁ = f₀ V / (V - v )
where f₁ and f₀ are apparent and real frequency of source , V and v is velocity of sound and velocity of approaching source respectively .
Putting the given values and knowing that speed of sound is 340 m /s
f₁ =346x 340 / (340 - 39.6 )
f₁ = 391.6 Hz
In case of receding train , the formula is
f₂ = f₀ V / (V + v )
Putting the values
f₂ = 346x 340 / (340 + 39.6 )
= 309.9 Hz
Change in frequency = 391.6 - 309.9
= 81.7 Hz .
I would choose the option B.
F = ma
a = 75 / 25 = 3 m/s^2
Answer:
No. 67
Peter Street
12th Road
Chennai
24th June 201_
Dear Amrish
I have come to know that since your school has closed for the Autumn Break you have plenty of free time at your disposal at the moment. I would like to tell you that even I am having holidays now.
It has been a long time since we have spent some time together. If you are free, I would welcome to have your company this weekend. Why don’t you come over to my house and spend a day or so with me?
I am anxiously waiting for your reply.
Yours affectionately
your name
Answer:
Part a)

Part b)

Explanation:
As we know that mountain climber is at rest so net force on it must be zero
So we will have force balance in X direction


now we will have force balance in Y direction


Part a)
so from above equations we have



Part b)
Now for tension in right string we will have


Answer:
Explanation:
cSep 20, 2010
well, since player b is obviously inadequate at athletics, it shows that player b is a woman, and because of this, she would not be able to hit the ball. The magnitude of the initial velocity would therefore be zero.
Anonymous
Sep 20, 2010
First you need to solve for time by using
d=(1/2)(a)(t^2)+(vi)t
1m=(1/2)(9.8)t^2 vertical initial velocity is 0m/s
t=.45 sec
Then you find the horizontal distance traveled by using
v=d/t
1.3m/s=d/.54sec
d=.585m
Then you need to find the time of player B by using
d=(1/2)(a)(t^2)+(vi)t
1.8m=(1/2)(9.8)(t^2) vertical initial velocity is 0
t=.61 sec
Finally to find player Bs initial horizontal velocity you use the horizontal equation
v=d/t
v=.585m/.61 sec
so v=.959m/s