1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
loris [4]
2 years ago
10

When a ray of light is incident normally on an air glass interface what is its angle of refraction​

Physics
1 answer:
DiKsa [7]2 years ago
3 0

Answer:

When a ray of light falls on a glass slab normally, the angle between normal and incident ray is zero.

You might be interested in
At constant pressure, the volume of a fixed mass of gas and its kelvin temperature are said to be
juin [17]
They are said to be directly related.

a) directly related.

This is Charles' Law.
3 0
3 years ago
Read 2 more answers
The clothes washer in your house consumes 470 kWh of energy per year. Price of the washer is $360 and the lifetime of the washer
VashaNatasha [74]

Answer:

$893

Explanation: the complete question should be

The clothes washer in your house consumes 470 kWh of energy per year. Price of the washer is $360 and the lifetime of the washer is 10 yrs. Energy price in your city is 9 cents per kWh. What is the lifecycle cost of the clothes washer? (assume a maintenance cost of $11 per year)

SOLUTION

Given:

The clothes washe power consumption (PC) is 470 kWh

Price of the washer (P) is $360

lifetime of the washer (L) is 10 yrs

Energy price in the city (E) is 9 cents per kWh (Covert to $ by dividing 100)

maintenance cost (M) is $11 per year

Lifecycle cost = P + (PC × L × E) +M + L

Lifecycle cost = $360 + (470kWh × 10years × 9cents/100) + ($11 × 10years)

=$893

7 0
3 years ago
Sphere A of mass 0.600 kg is initially moving to the right at 4.00 m/s. sphere B, of mass 1.80 kg is initially to the right of s
anzhelika [568]

A) The velocity of sphere A after the collision is 1.00 m/s to the right

B) The collision is elastic

C) The velocity of sphere C is 2.68 m/s at a direction of -5.2^{\circ}

D) The impulse exerted on C is 4.29 kg m/s at a direction of -5.2^{\circ}

E) The collision is inelastic

F) The velocity of the center of mass of the system is 4.00 m/s to the right

Explanation:

A)

We can solve this part by using the principle of conservation of momentum. The total momentum of the system must be conserved before and after the collision:

p_i = p_f\\m_A u_A + m_B u_B = m_A v_A + m_B v_B

m_A = 0.600 kg is the mass of sphere A

u_A = 4.00 m/s is the initial velocity of the sphere A (taking the right as positive direction)

v_A is the final velocity of sphere A

m_B = 1.80 kg is the mass of sphere B

u_B = 2.00 m/s is the initial velocity of the sphere B

v_B = 3.00 m/s is the final velocity of the sphere B

Solving for vA:

v_A = \frac{m_A u_A + m_B u_B - m_B v_B}{m_A}=\frac{(0.600)(4.00)+(1.80)(2.00)-(1.80)(3.00)}{0.600}=1.00 m/s

The sign is positive, so the direction is to the right.

B)

To verify if the collision is elastic, we have to check if the total kinetic energy is conserved or not.

Before the collision:

K_i = \frac{1}{2}m_A u_A^2 + \frac{1}{2}m_B u_B^2 =\frac{1}{2}(0.600)(4.00)^2 + \frac{1}{2}(1.80)(2.00)^2=8.4 J

After the collision:

K_f = \frac{1}{2}m_A v_A^2 + \frac{1}{2}m_B v_B^2 = \frac{1}{2}(0.600)(1.00)^2 + \frac{1}{2}(1.80)(3.00)^2=8.4 J

The total kinetic energy is conserved: therefore, the collision is elastic.

C)

Now we analyze the collision between sphere B and C. Again, we apply the law of conservation of momentum, but in two dimensions: so, the total momentum must be conserved both on the x- and on the y- direction.

Taking the initial direction of sphere B as positive x-direction, the total momentum before the collision along the x-axis is:

p_x = m_B v_B = (1.80)(3.00)=5.40 kg m/s

While the total momentum along the y-axis is zero:

p_y = 0

We can now write the equations of conservation of momentum along the two directions as follows:

p_x = p'_{Bx} + p'_{Cx}\\0 = p'_{By} + p'_{Cy} (1)

We also know the components of the momentum of B after the collision:

p'_{Bx}=(1.20)(cos 19)=1.13 kg m/s\\p'_{By}=(1.20)(sin 19)=0.39 kg m/s

So substituting into (1), we find the components of the momentum of C after the collision:

p'_{Cx}=p_B - p'_{Bx}=5.40 - 1.13=4.27 kg m/s\\p'_{Cy}=p_C - p'_{Cy}=0-0.39 = -0.39 kg m/s

So the magnitude of the momentum of C is

p'_C = \sqrt{p_{Cx}^2+p_{Cy}^2}=\sqrt{4.27^2+(-0.39)^2}=4.29 kg m/s

Dividing by the mass of C (1.60 kg), we find the magnitude of the velocity:

v_c = \frac{p_C}{m_C}=\frac{4.29}{1.60}=2.68 m/s

And the direction is

\theta=tan^{-1}(\frac{p_y}{p_x})=tan^{-1}(\frac{-0.39}{4.27})=-5.2^{\circ}

D)

The impulse imparted by B to C is equal to the change in momentum of C.

The initial momentum of C is zero, since it was at rest:

p_C = 0

While the final momentum is:

p'_C = 4.29 kg m/s

So the magnitude of the impulse exerted on C is

I=p'_C - p_C = 4.29 - 0 = 4.29 kg m/s

And the direction is the angle between the direction of the final momentum and the direction of the initial momentum: since the initial momentum is zero, the angle is simply equal to the angle of the final momentum, therefore -5.2^{\circ}.

E)

To check if the collision is elastic, we have to check if the total kinetic energy is conserved or not.

The total kinetic energy before the collision is just the kinetic energy of B, since C was at rest:

K_i = \frac{1}{2}m_B u_B^2 = \frac{1}{2}(1.80)(3.00)^2=8.1 J

The total kinetic energy after the collision is the sum of the kinetic energies of B and C:

K_f = \frac{1}{2}m_B v_B^2 + \frac{1}{2}m_C v_C^2 = \frac{1}{2}(1.80)(1.20)^2 + \frac{1}{2}(1.60)(2.68)^2=7.0 J

Since the total kinetic energy is not conserved, the collision is inelastic.

F)

Here we notice that the system is isolated: so there are no external forces acting on the system, and this means the system has no acceleration, according to Newton's second law:

F=Ma

Since F = 0, then a = 0, and so the center of mass of the system moves at constant velocity.

Therefore, the centre of mass after the 2nd collision must be equal to the velocity of the centre of mass before the 1st collision: which is the velocity of the sphere A before the 1st collision (because the other 2 spheres were at rest), so it is simply 4.00 m/s to the right.

Learn more about momentum and collisions:

brainly.com/question/6439920

brainly.com/question/2990238

brainly.com/question/7973509

brainly.com/question/6573742

#LearnwithBrainly

8 0
3 years ago
Besides, the discovery that moons orbit Jupiter, what other discovery made by Galileo Galilei, with an early telescope, proved t
Thepotemich [5.8K]

Answer:

He made great advancements in developing a logical way to know more about the universe and celestial entities inside the space. And this theory is termed to be heliocentric in nature.

Explanation:

  • In early times most of the people believed that our planet Earth is the center of the universe or the solar system and rest of the celestial entities move around it in a given path, so, it confused the well known scientist named as Galileo Galilei. As, he observed the different dark patches or shadow like textures on the face of the Sun.
  • While, it is more obvious to known that any object having multiple small shadows means that it is present inside such a region that all of the celestial entities move or orbit around it in a given way.So, he concluded that planet Earth itself move around the red Giant in a given way rather then being the center of the universe.

5 0
2 years ago
Explain<br> (0) what is meant by regeneration,<br> (ii) why an analogue signal cannot be regenerated
Kamila [148]

Explanation:

<h3>1.) Regeneration is the natural process of replacing or restoring damaged or missing cells, tissues, organs, and even entire body parts to full function in plants and animals.</h3>

2.) When noise is added to analogue signals, it usually sounds like background hiss. Such noise can not be removed so the original clean signal can not be re-created or re-generated.

6 0
3 years ago
Other questions:
  • An object is falling downward at a rate of 25 m/s. Two seconds later, what is its acceleration?
    11·1 answer
  • Is the moon blue????????
    5·2 answers
  • A particularly beautiful note reaching your ear from a rare stradivarius violin has a wavelength of 39.1 cm. the room is slightl
    11·1 answer
  • A 0.29 kg particle moves in an xy plane according to x(t) = - 19 + 1 t - 3 t3 and y(t) = 20 + 7 t - 9 t2, with x and y in meters
    10·1 answer
  • an empty paint tin of diameterv0.150m and height0.120m has amass of 0.22 kg it is filled with paint to within 7mm of the top its
    15·1 answer
  • You are attending a county fair with your friend from your physics class. While walking around the fairgrounds, you discover a n
    12·1 answer
  • The volume of a cube is 64 meter cubic. what is the length of the side of the cube?
    13·1 answer
  • Differentiate gravitational force and acceleration due to gravity​
    8·1 answer
  • When a potassium atom forms an ion, it loses one electron. What is the electrical charge of the potassium ion? *
    5·2 answers
  • How did Mendel explain the results of crossing 2
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!