The answer is 180 m-72 and then yeah
Answer:
x > -1
Step-by-step explanation:
Simplify the inequality using the distributive property (multiply the term outside the bracket with each number inside the bracket). Then, isolate 'x' by performing the reverse operations for every number that's on the same side as 'x'. (Reverse operations 'cancel out' a number.)
18 < -3(4x - 2) Expand this to simplify
18 < (-3)(4x) - (-3)(2) Multiply -3 with 4x and -2
18 < -12x + 6 Start isolating 'x'
18 - 6 < -12x + 6 - 6 Subtract 6 from both sides
18 - 6 < -12x '+ 6' is cancelled out on the right side
12 < -12x Subtracted 6 from 18 on the left side
12/-12 < -12x/-12 Divide both sides by -12
12/-12 < x 'x' is isolated. Simplify left side
-1 < x Answer
x > -1 Standard formatting puts variable on the left side
Answer:
a) cblo
2)$3.44
Step-by-step explanation:
4 cans and 3 loaves=11.67
8 cans and 1 loaf= 12.89.
Set up equation:
x=cans
y=loaves
This is the answer for question A.
Multiply eq1 by 2:

Subtract eq3 by eq2:

Substitute:

One can of soup and one loaf of bread=

So:

Hope this helps :D Please hit the crown if u can !!
Answer:
Answer below
Step-by-step explanation:
1/8 is correct
in pic
_________________________________________
(Hope this helps can I pls have brainlist (crown)☺️)
Check the picture below.
since the diameter of the cone is 6", then its radius is half that or 3", so getting the volume of only the cone, not the top.
1)
![\bf \textit{volume of a cone}\\\\ V=\cfrac{\pi r^2 h}{3}~~ \begin{cases} r=radius\\ h=height\\[-0.5em] \hrulefill\\ r=3\\ h=4 \end{cases}\implies V=\cfrac{\pi (3)^2(4)}{3}\implies V=12\pi \implies V\approx 37.7](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bvolume%20of%20a%20cone%7D%5C%5C%5C%5C%20V%3D%5Ccfrac%7B%5Cpi%20r%5E2%20h%7D%7B3%7D~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%20h%3Dheight%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20r%3D3%5C%5C%20h%3D4%20%5Cend%7Bcases%7D%5Cimplies%20V%3D%5Ccfrac%7B%5Cpi%20%283%29%5E2%284%29%7D%7B3%7D%5Cimplies%20V%3D12%5Cpi%20%5Cimplies%20V%5Capprox%2037.7)
2)
now, the top of it, as you notice in the picture, is a semicircle, whose radius is the same as the cone's, 3.
![\bf \textit{volume of a sphere}\\\\ V=\cfrac{4\pi r^3}{3}~~ \begin{cases} r=radius\\[-0.5em] \hrulefill\\ r=3 \end{cases}\implies V=\cfrac{4\pi (3)^3}{3}\implies V=36\pi \\\\\\ \stackrel{\textit{half of that for a semisphere}}{V=18\pi }\implies V\approx 56.55](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bvolume%20of%20a%20sphere%7D%5C%5C%5C%5C%20V%3D%5Ccfrac%7B4%5Cpi%20r%5E3%7D%7B3%7D~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20r%3D3%20%5Cend%7Bcases%7D%5Cimplies%20V%3D%5Ccfrac%7B4%5Cpi%20%283%29%5E3%7D%7B3%7D%5Cimplies%20V%3D36%5Cpi%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bhalf%20of%20that%20for%20a%20semisphere%7D%7D%7BV%3D18%5Cpi%20%7D%5Cimplies%20V%5Capprox%2056.55)
3)
well, you'll be serving the cone and top combined, 12π + 18π = 30π or about 94.25 in³.
4)
pretty much the same thing, we get the volume of the cone and its top, add them up.
