Answer:
x1 =2-5i*sqrt(2)
x2 =2+5i*sqrt(2)
Step-by-step explanation:
-x^2 +4x-54=0 (quadratic equation)
a=-1, b=4, c=-54
x1=(-b+sqrt(b^2-4ac))/2a
x1=(-4+sqrt(4^2 - 4*(-1)(-54))/2*(-1)
x1=(-4+sqrt(16-216))/(-2)
x1 =(-4+sqrt(-200))/(-2)
x1 =(-4+sqrt(200i^2))/(-2) i^2=-1
x1 =(-4+sqrt(100*2*i^2))/(-2)
x1 =(-4+10i*sqrt(2))/(-2)
x1 =2-5i*sqrt(2)
x2 =(-b-sqrt(b^2-4ac))/2a
x2 =(-4-10i*sqrt(2))/(-2)
x2 =2+5i*sqrt(2)
Hello,
A goat is on 15 for rope in the barn means that the radius is 15 feet.
Area of the circle=
πr^2
A=π×15^2
A=225π
A=706.5 square feet. As a result, 706.5 square feet is your final answer. Hope it help!
Answer:
h(d) = (17/3249)(-d² +114d)
Step-by-step explanation:
For this purpose, it is convenient to translate and scale a quadratic parent function so it has the desired characteristics. We can start with the function ...
f(x) = 1 -x² . . . . . . . has zeros at x = ±1 and a vertex at (0, 1)
We want to horizontally expand this function by a factor of 57, so we can replace x by x/57. We want to vertically scale it by a factor of 17, so the vertex is at (0, 17). Finally, we want to translate the function 57 m to the right, which requires replacing x with x-57. After these transformations, we have ...
f(x) = 17(1 -((x-57)/57)²) = (17/3249)(-x²+114x)
Using the appropriate function name and variable, we have ...
h(d) = (17/3249)(-d² +114d)
The answer is the last one (15+6)+3