Answer:
18
Step-by-step explanation:
you can do 12/2 to get 6 (the scale factor) and then multiply 3 by 6 and get 18
Answer:
A. The stepwise selection procedure uses Adjusted R-square as the "best" model criterion.
Step-by-step explanation:
Stepwise regression is a model which uses variables in step by step manner. The procedure involves removal or inclusion of independent variables one by one. It adds the most significant independent variable and removes the less significant independent variable. Usually stepwise selection uses R-square or Mallows Cp for picking the best fit.
First lets convert 24 ft into inches. Each foot has 12 inches so 24*12 equals 288. Now we have to see which one is greater 288 inches or 324 inches. 324 inches is greater so therefore 324 inches is greater than 24 ft
The height of the <em>water</em> depth is h = 14 + 6 · sin (π · t/6 + π/2), where t is in hours, and the height of the Ferris wheel is h = 21 + 19 · sin (π · t/20 - π/2), where t is in seconds. Please see the image to see the figures.
<h3>How to derive equations for periodical changes in time</h3>
According to the two cases described in the statement, we have clear example of <em>sinusoidal</em> model for the height as a function of time. In this case, we can make use of the following equation:
h = a + A · sin (2π · t/T + B) (1)
Where:
- a - Initial position, in meters.
- A - Amplitude, in meters.
- t - Time, in hours or seconds.
- T - Period, in hours or seconds.
- B - Phase, in radians.
Now we proceed to derive the equations for each case:
Water depth (u = 20 m, l = 8 m, a = 14 m, T = 12 h):
A = (20 m - 8 m)/2
A = 6 m
a = 14 m
Phase
20 = 14 + 6 · sin B
6 = 6 · sin B
sin B = 1
B = π/2
h = 14 + 6 · sin (π · t/6 + π/2), where t is in hours.
Ferris wheel (u = 40 m, l = 2 m, a = 21 m, T = 40 s):
A = (40 m - 2 m)/2
A = 19 m
a = 21 m
Phase
2 = 21 + 19 · sin B
- 19 = 19 · sin B
sin B = - 1
B = - π/2
h = 21 + 19 · sin (π · t/20 - π/2), where t is in seconds.
Lastly, we proceed to graph each case in the figures attached below.
To learn more on sinusoidal models: brainly.com/question/12060967
#SPJ1