Answer:
All planets have a circular orbit with the sun at the center
Answer:
Please provide the question you want help with
Answer:
The simulation only shows how a population can change overtime in response to the changes in the environment. During the industrial revolution, one particular phenotype of moths had an advantage over the other and hence, was subjected to natural selection. What this simulation does not tell us is the causality and correlation aspect of the change that occurs in the moths. Correlation does not equal causation, and the simulation does not shed any light on these variables in this case.
Explanation:
Hope that answers the question, have a great day!
The Hardy-Weinberg equation is as follows:


Where:
(convert all % to decimals)
p= homozygous dominant
q= homozygous recessive
pq= heterozygous
While you did not specify whether the 0.2 frequency was for dominant or recessive, we can still figure out the answer.
Using the 1st equation, we can solve for the other dominant/recessive frequency:
1-0.2=0.8
Meaning that:
p= 0.8 & q=0.2
If the heterozygouz frequency is 2pq, then it becomes a simple "plug & chug" sort of approach.
2(0.8)(0.2)= 2(0.16)= 0.32
So, the heterozygous frequency would be:
0.32
Hope this helps!
Answer:
A person who receives a gene for sickle cell disease from one parent and a normal gene from the other has a condition called "sickle cell trait." Sickle cell trait produces no symptoms or problems for most people. Sickle cell disease can neither be contracted nor passed on to another person.