<em>Hey</em><em>!</em><em>!</em><em>!</em>
<em><</em><em>a</em><em> </em><em>and</em><em> </em><em><</em><em>b</em><em> </em><em> </em><em>are</em><em> </em><em><u> </u></em><em><u>co</u></em><em><u>mpl</u></em><em><u>e</u></em><em><u>m</u></em><em><u>e</u></em><em><u>n</u></em><em><u>t</u></em><em><u>a</u></em><em><u>r</u></em><em><u>y</u></em><em><u> </u></em><em><u>angles</u></em><em><u>.</u></em>
<em><u>Those</u></em><em><u> </u></em><em><u>angles</u></em><em><u> </u></em><em><u>which</u></em><em><u> </u></em><em><u>are</u></em><em><u> </u></em><em><u>exactly</u></em><em><u> </u></em><em><u>9</u></em><em><u>0</u></em><em><u> </u></em><em><u>degree</u></em><em><u> </u></em><em><u>are</u></em><em><u> </u></em><em><u>called</u></em><em><u> </u></em><em><u>complementary</u></em><em><u> </u></em><em><u>angles</u></em><em><u>.</u></em>
<em><u>hope</u></em><em><u> </u></em><em><u>it</u></em><em><u> </u></em><em><u>helps</u></em><em><u>.</u></em><em><u>.</u></em>
The answer is -3 because you’re plugging g(x) into f(x). For every x there is in f(x), plug in g(x)’s equation. After you get another equation (simplified), which is x^2 -7x -11, plug -1 for every x and condense.
Step-by-step explanation:
If a variables varies jointly, we can just divide it by the other variables in relation to it.
For example, since p variables jointly as q and square of r, then

where k is a constant
First, let find k. Substitute p= 200
q= 2, and r=3.



Now, since we know our constant, let find p.

Q is 5, and r is 2.



7=2x + 15 2x= -8 x= -4
<span>8= 3x 8= 3x+0 3x +-8 3(-4) +-8 -12 - 8 </span>
<span>Final Answer -20</span>
Answer:
L = 260 cm^2
Step-by-step explanation:
height h = 12 cm
slant height s = 13 cm
side length a = 10 cm
lateral edge length e = 13.928388277184 cm
1/2 side length r = 5 cm
volume V = 400 cm^3
lateral surface area L = 260 cm^2
base surface area B = 100 cm^2
total surface area A = 360 cm^2
Genda: h = height
s = slant height
a = side length
e = lateral edge length
r = a/2
V = volume
L = lateral surface area
B = base surface area
A = total surface area