Answer:

Step-by-step explanation:
Let the number of acre of corn planted =x
Let the number of acre of soybeans planted =y
Seed costs for a farmer are $40 per acre for corn and $32 per acre for soybeans.
- Seed Cost for x acre of corn = $40x
- Seed Cost for y acre of soybeans = $32y
The farmer wants to spend no more than $5,000 on seed.
Therefore the linear inequality is:

Next, we graph the inequality

The graph is attached below.
Answer:
a. 5
b. 32
Step-by-step explanation:
Lo primero es corregir la función, la cual esta dada por () = − x^2+ 32, faltaba la x en la función, sino no tendría sentido.
a. debemos buscar la cantidad de repuesto donde el valor no sea haga negativo, por lo tanto debe ser un numero que al cuadrado no sea mayor que 32, pero sea el que más se encuentre cerca.
en este caso el valor es 5, debido que 6^2 es 36, es decir se pasa y 4^2 es 16, aunque no se pasa, es mejor 5^2 que es 25 y se encuentra más cerca.
b. El valor de máxima utilidad sería 32, ya que ese sería el mayor valor que podría tomar la función, el termino independiente.
Answer:
1350 ft²
Step-by-step explanation:
First off, I notice that the triangle at the bottom can fit the slant at the top to make a perfect rectangle.
This will leave us with a rectangle. We can add up 4 and 5 for the sum of 9, making one side 9 inches.
5 + 4 = 9 in
We multiply 9 by 3 to get the actual length of that side
9 x 3 = 27 ft.
We multiply 16 and two-thirds by 3 to get the actual length of the other side
x 3 = 50 ft.
To find the area of this rectangle we multiply length and width
50 x 27 = 1350 ft²
Answer:
4.5 seconds pass before reaching the ground
Step-by-step explanation:
The height of the object is given by the following equation:

How many seconds pass before reaching the ground
It hits the ground when h(t) = 0. So






There are no negative instants of time, so only the positive answer interests to us.
4.5 seconds pass before reaching the ground
Answer:
m∠YXS = 90°
Step-by-step explanation:
In the figure attached, the complete question is shown.
The reflection of a figure over a given line makes that, for example, segments SS' and YW perpendicular. In consequence, the measure of angles YXS and YXS' is 90°