The square root of a a negative integer is imaginary.
It would still be a negative under a square root if you multiplied it by 2, therefor it will still be imaginary, or I’m assuming as your book calls it, undefined.
2•(sqrt-1) = 2sqrt-1
If you add a number to -1 itself, specifically 1 or greater it will become a positive number or 0 assuming you just add 1. In that case it would be defined.
-1 + 1 = 0
-1 + 2 = 1
If you add a number to the entire thing “sqrt-1” it will not be defined.
(sqrt-1) + 1 = 1+ (sqrt-1)
If you subtract a number it will still have a negative under a square root, meaning it would be undefined.
(sqrt-1) + 1 = 1 + (sqrt-1)
however if you subtract a negative number from -1 itself, you end up getting a positive number or zero. (Subtracting a negative number is adding because the negative signs cancel out).
-1 - -1 = 0
-1 - -2 = 1
If you squared it you would get -1, which is defined
sqrt-1 • sqrt-1 = -1
and if you cubed it, you would get a negative under a square root again, therefor it would be undefined.
sqrt-1 • sqrt-1 • sqrt-1 = -1 • sqrt-1 = -1(sqrt-1)
Sorry if this answer is confusing, I don’t have a scientific keyboard, I’ll get one soon.
If looking for the answer it would be 0, 3, -6, 7
Answer: 0
Step-by-step explanation: it’s undefined
Answer:
126
Step-by-step explanation:
To calculate this, we need to assume at least one white marble will be picked... so let's take it out of the bag. Then we need to pick 4 more marbles... it's just then a combination calculation.
How many marbles is there in total? 4 + 3 + 2 + 1 = 10
We do just as if we had removed one white marble from the bag... so that leaves 9 in the bag.
We have to pick 4 out of those 9.... so, it's simple combination calculation:
C(9,4) = 9! / (4! (9--4)!) = 9! / (4! 5!) = 126
Some of those grabs will have 2 white marbles... but we're assured that there are 126 ways to combine the 10 marbles so there's at least one white in the 5 picked (since we forced it in our calculations).
Answer:
lololololollllololol
Step-by-step explanation:
yk might as well