Answer:
Given that,
The number of grams A of a certain radioactive substance present at time, in years
from the present, t is given by the formula

a) To find the initial amount of this substance
At t=0, we get


We know that e^0=1 ( anything to the power zero is 1)
we get,

The initial amount of the substance is 45 grams
b)To find thehalf-life of this substance
To find t when the substance becames half the amount.
A=45/2
Substitute this we get,


Taking natural logarithm on both sides we get,







Half-life of this substance is 154.02
c) To find the amount of substance will be present around in 2500 years
Put t=2500
we get,




The amount of substance will be present around in 2500 years is 0.000585 grams
The second answer is 4 times as small as the first
Answer:
a.) Between 0.5 and 3 seconds.
Step-by-step explanation:
So I just went ahead and graphed this quadratic on Desmos so you could have an idea of what this looks like. A negative quadratic, and we're trying to find when the graph's y-values are greater than 26.
If you look at the graph, you can easily see that the quadratic crosses y = 26 at x-values 0.5 and 3. And, you can see that the quadratic's graph is actually above y = 26 between these two values, 0.5 and 3.
Because we know that the quadratic's graph models the projectile's motion, we can conclude that the projectile will also be above 26 feet between 0.5 and 3 seconds.
So, the answer is a.) between 0.5 and 3 seconds.
x/4 ≥ 9 is the expression you want