1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lawyer [7]
3 years ago
12

What is the perimeter of the rectangle below 8 in 6 in 8 in 6 in

Mathematics
1 answer:
andre [41]3 years ago
4 0
28 you take eight plus eight plus six plus six
You might be interested in
sasha needs an average of 30 points to move to the next level in her competion . her scores in the first three events are 28, 35
salantis [7]
Sarah will need 27pts her lowest score
3 0
3 years ago
f(x) = 3 cos(x) 0 ≤ x ≤ 3π/4 evaluate the Riemann sum with n = 6, taking the sample points to be left endpoints. (Round your ans
Kruka [31]

Answer:

\int_{0}^{\frac{3 \pi}{4}}3 \cos{\left(x \right)}\ dx\approx 3.099558

Step-by-step explanation:

We want to find the Riemann sum for \int_{0}^{\frac{3 \pi}{4}}3 \cos{\left(x \right)}\ dx with n = 6, using left endpoints.

The Left Riemann Sum uses the left endpoints of a sub-interval:

\int_{a}^{b}f(x)dx\approx\Delta{x}\left(f(x_0)+f(x_1)+2f(x_2)+...+f(x_{n-2})+f(x_{n-1})\right)

where \Delta{x}=\frac{b-a}{n}.

Step 1: Find \Delta{x}

We have that a=0, b=\frac{3\pi }{4}, n=6

Therefore, \Delta{x}=\frac{\frac{3 \pi}{4}-0}{6}=\frac{\pi}{8}

Step 2: Divide the interval \left[0,\frac{3 \pi}{4}\right] into n = 6 sub-intervals of length \Delta{x}=\frac{\pi}{8}

a=\left[0, \frac{\pi}{8}\right], \left[\frac{\pi}{8}, \frac{\pi}{4}\right], \left[\frac{\pi}{4}, \frac{3 \pi}{8}\right], \left[\frac{3 \pi}{8}, \frac{\pi}{2}\right], \left[\frac{\pi}{2}, \frac{5 \pi}{8}\right], \left[\frac{5 \pi}{8}, \frac{3 \pi}{4}\right]=b

Step 3: Evaluate the function at the left endpoints

f\left(x_{0}\right)=f(a)=f\left(0\right)=3=3

f\left(x_{1}\right)=f\left(\frac{\pi}{8}\right)=3 \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}=2.77163859753386

f\left(x_{2}\right)=f\left(\frac{\pi}{4}\right)=\frac{3 \sqrt{2}}{2}=2.12132034355964

f\left(x_{3}\right)=f\left(\frac{3 \pi}{8}\right)=3 \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}=1.14805029709527

f\left(x_{4}\right)=f\left(\frac{\pi}{2}\right)=0=0

f\left(x_{5}\right)=f\left(\frac{5 \pi}{8}\right)=- 3 \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}=-1.14805029709527

Step 4: Apply the Left Riemann Sum formula

\frac{\pi}{8}(3+2.77163859753386+2.12132034355964+1.14805029709527+0-1.14805029709527)=3.09955772805315

\int_{0}^{\frac{3 \pi}{4}}3 \cos{\left(x \right)}\ dx\approx 3.099558

5 0
3 years ago
The U.S. Census Bureau conducts a study to determine the time needed to complete the short form. The Bureau surveys 200 people.
NISA [10]

Answer:

8.2-2.58\frac{2.2}{\sqrt{18}}=6.86    

8.2+2.58\frac{2.2}{\sqrt{18}}=9.54    

So on this case the 90% confidence interval would be given by (6.86;9.54)    And the error is given by:

ME= 2.58\frac{2.2}{\sqrt{18}} =1.338

Step-by-step explanation:

Previous concepts

A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".

The margin of error is the range of values below and above the sample statistic in a confidence interval.

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

\bar X=8.2 represent the sample mean for the sample  

\mu population mean (variable of interest)

\sigma=2.2 represent the population standard deviation

n represent the sample size  

Solution to the problem

The confidence interval for the mean is given by the following formula:

\bar X \pm z_{\alpha/2}\frac{\sigma}{\sqrt{n}}   (1)

Since the Confidence is 0.90 or 90%, the value of \alpha=0.1 and \alpha/2 =0.005, and we can use excel, a calculator or a table to find the critical value. The excel command would be: "=-NORM.INV(0.005,0,1)".And we see that z_{\alpha/2}=2.58

Now we have everything in order to replace into formula (1):

8.2-2.58\frac{2.2}{\sqrt{18}}=6.86    

8.2+2.58\frac{2.2}{\sqrt{18}}=9.54    

So on this case the 90% confidence interval would be given by (6.86;9.54)    And the error is given by:

ME= 2.58\frac{2.2}{\sqrt{18}} =1.338

8 0
3 years ago
Read 2 more answers
Raina runs 3 miles in 28 minutes. At the same rate how many miles would she went and 42 minutes
Lorico [155]

Answer:

4.5miles

Step-by-step explanation:

divide 28 by 3 to get 9.333 minutes each mile

then divide 42 by 9.333 to get 4.50 miles

8 0
3 years ago
Okay so I NEED help tonight. Please someone I really have to finish this tonight.
nlexa [21]
What do you need to finish
6 0
3 years ago
Other questions:
  • Find the area of the triangle below ( example A )
    8·1 answer
  • Question 30 Unsaved
    5·2 answers
  • 1 7 1<br> What is the solution to the equation à x-5-6+3x?<br> X=-5<br> X=-4<br> OX= 4<br> X= 5
    11·1 answer
  • Which of these is longest distance 0.1203km or 123m or 1230cm or 12030mm
    12·1 answer
  • Consider the system of equations:
    6·1 answer
  • calcular el tamaño de muestra para una poblacion de 543.098 consumidores de una marca de bebida gaseosa donde el investigador as
    12·1 answer
  • If f(x) = 1/x^2 -1, then f(1/a+1)=
    11·1 answer
  • The management of a supermarket wants to find if there is a relationship between the number of times a specific product is promo
    11·1 answer
  • My number 4752512944
    6·1 answer
  • What is the aswer ??????​
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!