$4,000 in the 10% per year account
$11,000 in the 12% per year account
Answer:
<em>A. 21°, 69°</em>
Step-by-step explanation:
If you work by process of elimination all you have to do is take 27 away from the bigger degree of the two and see if it is 2x as much as the smaller degree.
Ex.
1. 69°-27°= 42°, which is 2x as many as 21°.
Answer: y = 1.5x + 3
Step-by-step explanation:
Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality<u>
</u>
<u>Algebra I</u>
- Terms/Coefficients
- Functions
- Function Notation
- Graphing
- Solving systems of equations
<u>Calculus</u>
Area - Integrals
Integration Rule [Reverse Power Rule]: 
Integration Rule [Fundamental Theorem of Calculus 1]: 
Integration Property [Addition/Subtraction]: ![\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%20%7B%5Bf%28x%29%20%5Cpm%20g%28x%29%5D%7D%20%5C%2C%20dx%20%3D%20%5Cint%20%7Bf%28x%29%7D%20%5C%2C%20dx%20%5Cpm%20%5Cint%20%7Bg%28x%29%7D%20%5C%2C%20dx)
Area of a Region Formula: ![\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20A%20%3D%20%5Cint%5Climits%5Eb_a%20%7B%5Bf%28x%29%20-%20g%28x%29%5D%7D%20%5C%2C%20dx)
Step-by-step explanation:
*Note:
<em>Remember that for the Area of a Region, it is top function minus bottom function.</em>
<u />
<u>Step 1: Define</u>
f(x) = x²
g(x) = x⁶
Bounded (Partitioned) by x-axis
<u>Step 2: Identify Bounds of Integration</u>
<em>Find where the functions intersect (x-values) to determine the bounds of integration.</em>
Simply graph the functions to see where the functions intersect (See Graph Attachment).
Interval: [-1, 1]
Lower bound: -1
Upper Bound: 1
<u>Step 3: Find Area of Region</u>
<em>Integration</em>
- Substitute in variables [Area of a Region Formula]:
![\displaystyle A = \int\limits^1_{-1} {[x^2 - x^6]} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20A%20%3D%20%5Cint%5Climits%5E1_%7B-1%7D%20%7B%5Bx%5E2%20-%20x%5E6%5D%7D%20%5C%2C%20dx)
- [Area] Rewrite [Integration Property - Subtraction]:

- [Area] Integrate [Integration Rule - Reverse Power Rule]:

- [Area] Evaluate [Integration Rule - FTC 1]:

- [Area] Subtract:

Topic: AP Calculus AB/BC (Calculus I/II)
Unit: Area Under the Curve - Area of a Region (Integration)
Book: College Calculus 10e