First, we need to determine the half reaction of magnesium. It would be expressed as:
Mg2+ + 2e- = Mg
Given the mass of magnesium metal that is produced, we calculate the total charge of the electrolysis by the relations we can get from the half reaction. We do as follows:
4.50 kg Mg ( 1000 g / 1 kg ) ( 1 mol / 24.305 g ) ( 2 mol e- / 1 mol Mg ) ( 96500 C / 1 mol e- ) = 35733388.2 C
We are given the applied EMF in units of V. This value is equal to J/C. So, 5 V is equal to 5 J/C.
35733388.2 C (5 J/C) = 178666941 J
178666941 J ( 1 kW-h / 3.6x10^6 J ) = 49.63 kW-h
Answer:
1M
Explanation:
The molarity of a substance is defined as the number of moles of the substance divided by how many liters the solution is. NaOH has a molar mass of about 40 grams, meaning that 10 grams of it would be 0.25 moles. 0.25/0.25= a molarity of 1.
Hope this helps!
Answer:
The major product is 2-methyl-2-pentene [ CH₃-CH₂-CH=C(CH₃)₂ ] and a minor product 2-methyl-1-pentene [ CH₃-CH₂-CH₂-C(CH₃)=CH₂ ].
Explanation:
Dehydration reaction is a reaction in which a molecule loses a water molecule in the presence of a dehydrating agent like sulfuric acid (H₂SO₄).
<u>Dehydration reaction of 2-methyl-2-pentanol</u> gives a major product 2-methyl-2-pentene and a minor product 2-methyl-1-pentene.
CH₃-CH₂-CH₂-C(CH₃)₂-OH (2-methyl-2-pentanol)→ CH₃-CH₂-CH=C(CH₃)₂ (2-methyl-2-pentene, major) + CH₃-CH₂-CH₂-C(CH₃)=CH₂ (2-methyl-1-pentene, minor)
<u>Since more substituted alkene is more stable than the less substituted alkene. So, the trisubstituted alkene, 2-methyl-2-pentene is more stable than the disubstituted alkene, 2-methyl-1-pentene.</u>
<u>Therefore, the trisubstituted alkene, 2-methyl-2-pentene is the major product and the disubstituted alkene, 2-methyl-1-pentene is the minor product.</u>