9514 1404 393
Answer:
see attached
Step-by-step explanation:
Most of this exercise is looking at different ways to identify the slope of the line. The first attachment shows the corresponding "run" (horizontal change) and "rise" (vertical change) between the marked points.
In your diagram, these values (run=1, rise=-3) are filled in 3 places. At the top, the changes are described in words. On the left, they are described as "rise" and "run" with numbers. At the bottom left, these same numbers are described by ∆y and ∆x.
The calculation at the right shows the differences between y (numerator) and x (denominator) coordinates. This is how you compute the slope from the coordinates of two points.
If you draw a line through the two points, you find it intersects the y-axis at y=4. This is the y-intercept that gets filled in at the bottom. (The y-intercept here is 1 left and 3 up from the point (1, 1).)
The answer is C. -0.25; the rate at which Martin's distance from the finish line changes per minute
Answer:

Step-by-step explanation:
Two lines are given to us which are perpendicular to each other and we need to find out the value of a . The given equations are ,
Step 1 : <u>Conver</u><u>t</u><u> </u><u>the </u><u>equations</u><u> in</u><u> </u><u>slope</u><u> intercept</u><u> form</u><u> </u><u>of</u><u> the</u><u> line</u><u> </u><u>.</u>
and ,
Step 2: <u>Find </u><u>the</u><u> </u><u>slope</u><u> of</u><u> the</u><u> </u><u>lines </u><u>:</u><u>-</u>
Now we know that the product of slope of two perpendicular lines is -1. Therefore , from Slope Intercept Form of the line we can say that the slope of first line is ,
And the slope of the second line is ,
Step 3: <u>Multiply</u><u> </u><u>the </u><u>slopes </u><u>:</u><u>-</u><u> </u>
Multiply ,
Multiply both sides by a ,
Divide both sides by -1 ,
<u>Hence </u><u>the</u><u> </u><u>value</u><u> of</u><u> a</u><u> </u><u>is </u><u>9</u><u> </u><u>.</u>
Inc on (-inf,0)
Dec on (0,inf)