Answer:
226
Step-by-step explanation:
To find the percentage of a given value, firstly convert to a decimal by dividing by 100:
82 ÷ 100 = 0.82
Now, multiply this decimal by the number of tickets:
275 x 0.82 = 225.5
Because you can't sell half a ticket, round up.
This means the total of tickets they need to sell is 226.
Hope this helps!
Which empty boxes? have you attached any pic?
<em>Answer:
</em>
<em>y = </em>
<em>
− 7 x 3 −
2</em>
<em />
<em>Step-by-step explanation:</em>
<em>you gotta work backwards to find the factors from the roots then multiply the factors together.</em>
<h3>Answer:</h3>
F (3x, 3y)
<h3>Explanation:</h3>
Dilation about the origin multiplies each coordinate by the dilation factor. For some coordinates (x, y), dilation by a factor of 3 means the new coordinates are ...
... 3×(x, y) = (3x, 3y)
_____
<em>Comment on the problem</em>
The way the problem is worded, you expect an answer choice that will be specific to the coordinates of point A. There are none.
Instead, the answer choices are generic, corresponding to dilation of a point (x, y) by a factor of 3, translation up and to the right by 3, dilation by a factor of 1/3, and translation down and to the left by 3.
Answer:
The statement is true is for any
.
Step-by-step explanation:
First, we check the identity for
:



The statement is true for
.
Then, we have to check that identity is true for
, under the assumption that
is true:
![(1^{2}+2^{2}+3^{2}+...+k^{2}) + [2\cdot (k+1)-1]^{2} = \frac{(k+1)\cdot [2\cdot (k+1)-1]\cdot [2\cdot (k+1)+1]}{3}](https://tex.z-dn.net/?f=%281%5E%7B2%7D%2B2%5E%7B2%7D%2B3%5E%7B2%7D%2B...%2Bk%5E%7B2%7D%29%20%2B%20%5B2%5Ccdot%20%28k%2B1%29-1%5D%5E%7B2%7D%20%3D%20%5Cfrac%7B%28k%2B1%29%5Ccdot%20%5B2%5Ccdot%20%28k%2B1%29-1%5D%5Ccdot%20%5B2%5Ccdot%20%28k%2B1%29%2B1%5D%7D%7B3%7D)
![\frac{k\cdot (2\cdot k -1)\cdot (2\cdot k +1)}{3} +[2\cdot (k+1)-1]^{2} = \frac{(k+1)\cdot [2\cdot (k+1)-1]\cdot [2\cdot (k+1)+1]}{3}](https://tex.z-dn.net/?f=%5Cfrac%7Bk%5Ccdot%20%282%5Ccdot%20k%20-1%29%5Ccdot%20%282%5Ccdot%20k%20%2B1%29%7D%7B3%7D%20%2B%5B2%5Ccdot%20%28k%2B1%29-1%5D%5E%7B2%7D%20%3D%20%5Cfrac%7B%28k%2B1%29%5Ccdot%20%5B2%5Ccdot%20%28k%2B1%29-1%5D%5Ccdot%20%5B2%5Ccdot%20%28k%2B1%29%2B1%5D%7D%7B3%7D)
![\frac{k\cdot (2\cdot k -1)\cdot (2\cdot k +1)+3\cdot [2\cdot (k+1)-1]^{2}}{3} = \frac{(k+1)\cdot [2\cdot (k+1)-1]\cdot [2\cdot (k+1)+1]}{3}](https://tex.z-dn.net/?f=%5Cfrac%7Bk%5Ccdot%20%282%5Ccdot%20k%20-1%29%5Ccdot%20%282%5Ccdot%20k%20%2B1%29%2B3%5Ccdot%20%5B2%5Ccdot%20%28k%2B1%29-1%5D%5E%7B2%7D%7D%7B3%7D%20%3D%20%5Cfrac%7B%28k%2B1%29%5Ccdot%20%5B2%5Ccdot%20%28k%2B1%29-1%5D%5Ccdot%20%5B2%5Ccdot%20%28k%2B1%29%2B1%5D%7D%7B3%7D)

![(2\cdot k +1)\cdot [k\cdot (2\cdot k -1)+3\cdot (2\cdot k +1)] = (k+1) \cdot (2\cdot k +1)\cdot (2\cdot k +3)](https://tex.z-dn.net/?f=%282%5Ccdot%20k%20%2B1%29%5Ccdot%20%5Bk%5Ccdot%20%282%5Ccdot%20k%20-1%29%2B3%5Ccdot%20%282%5Ccdot%20k%20%2B1%29%5D%20%3D%20%28k%2B1%29%20%5Ccdot%20%282%5Ccdot%20k%20%2B1%29%5Ccdot%20%282%5Ccdot%20k%20%2B3%29)



Therefore, the statement is true for any
.