Survival rates of newborns
Average life spans
Death rates
level of and access to medicare
Local diseases with high mortality rates (Malaria,AIDS,Dengue, ETC)
Education levels
Economic levels
Governmental programs or laws (available food) ECT
Temperature/environment conditions
Answer:
A) Bacteria cannot carry out RNA splicing to remove introns and so produced a much larger protein.
Explanation:
Human is a eukaryote and has both introns and exons in its genes. Transcription of human genes forms a primary transcript that undergoes post-transcriptional modification.
One of the important even during the post-transcriptional modification is the removal of introns and joining the exons together to make a mature mRNA which in turn serves as the template for protein synthesis.
<em>E. coli</em> is a prokaryote and does not have the enzymatic machinery required for the splicing of introns.
Cloning of a complete human gene into the <em>E. coli</em> cells would not form the respective human protein since the bacterial cells would not be able to splice the introns from the primary transcript.
A Only one variable changed
<span>Schizophrenia
This is a mental disorder characterised by failure to understand what is real and abnormal social behaviour .
Studies across 20 countries have shown a strong link between smoking and schizophrenia .</span>
Answer: The options are not included.
But the sites are;
Interaction with ribosomes.
Interaction with aminoacyl tRNA
synthase.
Attachment of the specific Amino acid.
Interaction with codon.
Explanation:
Transfer RNA is a type of RNA that help to translate messenger RNA sequence into protein. Each tRNA have two major areas; the anticodon and region for attaching specific Amino acids.
tRNAs function at specific sites in the ribosomes during mRNA deciding.
The four specific recognition sites of trna that must be inherent in it's tertiary structures in order for it to carry out it's role are;.
Interaction with ribosomes.
Interaction with aminoacyl tRNA synthase.
Attachment of specific Amino acid.
Interaction with codon.