The correct answer to this question is letter A which is visualizing. Visualizing is the act of picturing a certain situation in your head to recall how it works. In this example, you want to remember how a volcano functions. A volcano erupts. So in order to remember this, you picture in your mind a volcano that is erupting. So once you are asked a question about the functions of a volcano, your mind will immediately show the picture of a volcano erupting.
Answer: 6.5? I think this is the answer but not sure.
Answer:
I don't know sorry
sorry
Step-by-step explanation:
I don't know sorry
sorry
Answer:
x = 15
Step-by-step explanation:
We assume you want to find the value of x.
Know (or prove) that in this geometry, all of the right triangles are similar. That means the ratios of corresponding sides are proportional.
short side / hypotenuse = 9/x = x/25
x^2 = (9)(25) . . . . . . . . . . multiply by 25x ("cross multiply")
x = √((9)(25)) = (3)(5) . . . take the square root
x = 15
Answer:
![\left[\begin{array}{cc}6&-3\\10&-1\end{array}\right]+\left[\begin{array}{cc}-2&8\\3&-12\end{array}\right]=\left[\begin{array}{cc}4&5\\13&-13\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D6%26-3%5C%5C10%26-1%5Cend%7Barray%7D%5Cright%5D%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-2%268%5C%5C3%26-12%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D4%265%5C%5C13%26-13%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
If you have two matrices:
![A=\left[\begin{array}{cc}a&b\\c&d\end{array}\right]\\and\\B=\left[\begin{array}{cc}e&f\\g&h\end{array}\right]\\\\\\A+B=\left[\begin{array}{cc}a+e&b+f\\c+g&d+h\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%26b%5C%5Cc%26d%5Cend%7Barray%7D%5Cright%5D%5C%5Cand%5C%5CB%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7De%26f%5C%5Cg%26h%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%5C%5CA%2BB%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%2Be%26b%2Bf%5C%5Cc%2Bg%26d%2Bh%5Cend%7Barray%7D%5Cright%5D)
We have:
![A=\left[\begin{array}{cc}6&-3\\10&-1\end{array}\right]\\and\\B=\left[\begin{array}{cc}-2&8\\3&-12\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D6%26-3%5C%5C10%26-1%5Cend%7Barray%7D%5Cright%5D%5C%5Cand%5C%5CB%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-2%268%5C%5C3%26-12%5Cend%7Barray%7D%5Cright%5D)
And we need to express as a single matrix:
![A+B=\left[\begin{array}{cc}6&-3\\10&-1\end{array}\right]+\left[\begin{array}{cc}-2&8\\3&-12\end{array}\right]\\\\\\A+B=\left[\begin{array}{cc}6+(-2)&-3+8\\10+3&-1+(-12)\end{array}\right]\\\\\\A+B=\left[\begin{array}{cc}6-2&5\\13&-1-12\end{array}\right]\\\\\\A+B=\left[\begin{array}{cc}4&5\\13&-13\end{array}\right]](https://tex.z-dn.net/?f=A%2BB%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D6%26-3%5C%5C10%26-1%5Cend%7Barray%7D%5Cright%5D%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-2%268%5C%5C3%26-12%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%5C%5CA%2BB%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D6%2B%28-2%29%26-3%2B8%5C%5C10%2B3%26-1%2B%28-12%29%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%5C%5CA%2BB%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D6-2%265%5C%5C13%26-1-12%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%5C%5CA%2BB%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D4%265%5C%5C13%26-13%5Cend%7Barray%7D%5Cright%5D)
The answer is:
![\left[\begin{array}{cc}6&-3\\10&-1\end{array}\right]+\left[\begin{array}{cc}-2&8\\3&-12\end{array}\right]=\left[\begin{array}{cc}4&5\\13&-13\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D6%26-3%5C%5C10%26-1%5Cend%7Barray%7D%5Cright%5D%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-2%268%5C%5C3%26-12%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D4%265%5C%5C13%26-13%5Cend%7Barray%7D%5Cright%5D)
It is expressed as a single matrix.