If you would like to write a * b + c in simplest form, you can do this using the following steps:
a = x + 1
b = x^2 + 2x - 1
c = 2x
a * b + c = (x + 1) * (x^2 + 2x - 1) + 2x = x^3 + 2x^2 - x + x^2 + 2x - 1 + 2x = x^3 + 3x^2 + 3x - 1
The correct result would be x^3 + 3x^2 + 3x - 1.
Answer:
you would have to add 3 to 1 cuz there is a one with the x and since 3 is negative that how you would get y=-3x+1
Step-by-step explanation:
We can first add up the cards so we know how many we have in all:
16 + 16 + 18 = 50 cards
We can do this a little bit easier if we get the "16"-cards in one number total.
16 + 16 = 32

= 32 x 2 =

50 x 2

= 64 : 2 = 32 %
100
We did just divide the % of two types cards on 2, so we get the %-chance of 1 type card.
I am not quite sure, but I think that 32 % is the correct answer.
Answer:
The solution of the equations are -6 and 1
Step-by-step explanation:
* <em>Lets explain how to solve the problem</em>
- We want to find the solution of the equation (x + 2) (x + 3) = 12
- <em>At first lets use the Foil method to multiply the two brackets</em>
(x + 2) (x + 3) = (x)(x) + (x)(3) + (2)(x) + (2)(3)
(x + 2) (x + 3) = x² + 3x + 2x + 6 ⇒ add the like term
(x + 2) (x + 3) = x² + 5x + 6
∵ (x + 2) (x + 3) = 12
∴ x² + 5x + 6 = 12
- Subtract 12 from both sides
∴ x² + 5x - 6 = 0
- <em>Factorize the left hand side</em>
∵ x² = (x)(x)
∵ -6 = 6 × -1
∵ 6x + -1x = 5x
∴ (x + 6)(x - 1) = 0
- <em>Lets use the zero product property </em>
∵ (x + 6)(x - 1) = 0
∴ x + 6 = 0 ⇒ <em>OR</em> ⇒ x - 1 = 0
∵ x + 6 = 0
- Subtract 6 from both sides
∴ x = -6
∵ x - 1 = 0
- Add 1 to both sides
∴ x = 1
∴ The solution of the equations are -6 and 1