1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jenyasd209 [6]
3 years ago
10

Which solution set is graphed on the number line? 4-3-210

Mathematics
2 answers:
maw [93]3 years ago
6 0
C is your answer because the circle is open and not colored.
ozzi3 years ago
6 0
The answer is C because it is an opened circle and not a closed circle
Hope this helps!!!
You might be interested in
Annie buys 25 business cards for 9.75 <br><br> what is the rate annie pays per business card?
Paul [167]

her rate is 0.39 per business

6 0
3 years ago
Read 2 more answers
How to solve this trig
n200080 [17]

Hi there!

To find the Trigonometric Equation, we have to isolate sin, cos, tan, etc. We are also given the interval [0,2π).

<u>F</u><u>i</u><u>r</u><u>s</u><u>t</u><u> </u><u>Q</u><u>u</u><u>e</u><u>s</u><u>t</u><u>i</u><u>o</u><u>n</u>

What we have to do is to isolate cos first.

\displaystyle  \large{ cos \theta =  -  \frac{1}{2} }

Then find the reference angle. As we know cos(π/3) equals 1/2. Therefore π/3 is our reference angle.

Since we know that cos is negative in Q2 and Q3. We will be using π + (ref. angle) for Q3. and π - (ref. angle) for Q2.

<u>F</u><u>i</u><u>n</u><u>d</u><u> </u><u>Q</u><u>2</u>

\displaystyle \large{ \pi -  \frac{ \pi}{3}  =  \frac{3 \pi}{3}  -  \frac{  \pi}{3} } \\  \displaystyle \large \boxed{ \frac{2 \pi}{3} }

<u>F</u><u>i</u><u>n</u><u>d</u><u> </u><u>Q</u><u>3</u>

<u>\displaystyle \large{ \pi  +   \frac{ \pi}{3}  =  \frac{3 \pi}{3}   +   \frac{  \pi}{3} } \\  \displaystyle \large \boxed{ \frac{4 \pi}{3} }</u>

Both values are apart of the interval. Hence,

\displaystyle \large \boxed{ \theta =  \frac{2 \pi}{3} , \frac{4 \pi}{3} }

<u>S</u><u>e</u><u>c</u><u>o</u><u>n</u><u>d</u><u> </u><u>Q</u><u>u</u><u>e</u><u>s</u><u>t</u><u>i</u><u>o</u><u>n</u>

Isolate sin(4 theta).

\displaystyle \large{sin 4 \theta =  -  \frac{1}{ \sqrt{2} } }

Rationalize the denominator.

\displaystyle \large{sin4 \theta =  -  \frac{ \sqrt{2} }{2} }

The problem here is 4 beside theta. What we are going to do is to expand the interval.

\displaystyle \large{0 \leqslant  \theta < 2 \pi}

Multiply whole by 4.

\displaystyle \large{0 \times 4 \leqslant  \theta \times 4 < 2 \pi \times 4} \\  \displaystyle \large \boxed{0 \leqslant 4 \theta < 8 \pi}

Then find the reference angle.

We know that sin(π/4) = √2/2. Hence π/4 is our reference angle.

sin is negative in Q3 and Q4. We use π + (ref. angle) for Q3 and 2π - (ref. angle for Q4.)

<u>F</u><u>i</u><u>n</u><u>d</u><u> </u><u>Q</u><u>3</u>

<u>\displaystyle \large{ \pi +  \frac{ \pi}{4}  =  \frac{ 4 \pi}{4}  +  \frac{ \pi}{4} } \\  \displaystyle \large \boxed{  \frac{5 \pi}{4} }</u>

<u>F</u><u>i</u><u>n</u><u>d</u><u> </u><u>Q</u><u>4</u>

\displaystyle \large{2 \pi -  \frac{ \pi}{4}  =  \frac{8 \pi}{4}  -  \frac{ \pi}{4} } \\  \displaystyle \large \boxed{ \frac{7 \pi}{4} }

Both values are in [0,2π). However, we exceed our interval to < 8π.

We will be using these following:-

\displaystyle \large{ \theta + 2 \pi k =  \theta \:  \:  \:  \:  \:  \sf{(k  \:  \: is \:  \: integer)}}

Hence:-

<u>F</u><u>o</u><u>r</u><u> </u><u>Q</u><u>3</u>

\displaystyle \large{ \frac{5 \pi}{4}  + 2 \pi =  \frac{13 \pi}{4} } \\  \displaystyle \large{ \frac{5 \pi}{4}  + 4\pi =  \frac{21 \pi}{4} } \\  \displaystyle \large{ \frac{5 \pi}{4}  + 6\pi =  \frac{29 \pi}{4} }

We cannot use any further k-values (or k cannot be 4 or higher) because it'd be +8π and not in the interval.

<u>F</u><u>o</u><u>r</u><u> </u><u>Q</u><u>4</u>

\displaystyle \large{ \frac{ 7 \pi}{4}  + 2 \pi =  \frac{15 \pi}{4} } \\  \displaystyle \large{ \frac{ 7 \pi}{4}  + 4 \pi =  \frac{23\pi}{4} } \\  \displaystyle \large{ \frac{ 7 \pi}{4}  + 6 \pi =  \frac{31 \pi}{4} }

Therefore:-

\displaystyle \large{4 \theta =  \frac{5 \pi}{4} , \frac{7 \pi}{4} , \frac{13\pi}{4} , \frac{21\pi}{4} , \frac{29\pi}{4}, \frac{15 \pi}{4} , \frac{23\pi}{4} , \frac{31\pi}{4}  }

Then we divide all these values by 4.

\displaystyle \large \boxed{\theta =  \frac{5 \pi}{16} , \frac{7 \pi}{16} , \frac{13\pi}{16} , \frac{21\pi}{16} , \frac{29\pi}{16}, \frac{15 \pi}{16} , \frac{23\pi}{16} , \frac{31\pi}{16}  }

Let me know if you have any questions!

3 0
3 years ago
Evaluate the expression.<br><br> -66/(-3) + (-4) - (-5)
Rasek [7]

Answer:

23

Step-by-step explanation:

Simplify the following:

(-66)/(-3) - 4 - -5

The gcd of -66 and -3 is -3, so (-66)/(-3) = (-3×22)/(-3×1) = (-3)/(-3)×22 = 22:

22 - 4 - -5

-(-5) = 5:

22 - 4 + 5

22 + 5 = 27:

27 - 4

| 2 | 7

- | | 4

| 2 | 3:

Answer:  23

7 0
3 years ago
Read 2 more answers
Help meeee please!!!!!
ladessa [460]

Answer:

Step 3: Choice D

Step 5: Choice B

Step 6: Choice A

Step 8: Choice C

(I saw in the top left corner of the picture that this is for Algebra II. I am in 8th grade, currently taking geometry, and I haven't taken Algebra II yet, but I <em>did</em> take Algebra I last year. I am 95% sure this is correct but if it isn't, the I sincerely apologize.)

7 0
3 years ago
A number is divided in the ratio 3:4. If the first part is 24, find the number.​
dedylja [7]

Answer:

<h3>31</h3>

Step-by-step explanation:

<h3>Let the other part be x.</h3>

<h3>Now,</h3><h3 /><h3>24:x=3:4</h3>

<h3>3x=96</h3><h3 /><h3>X = 96/3 = 32</h3>

<h3>1</h3>

<h3>Other part = 32</h3>

<h2>mark me brainlist!</h2>
5 0
2 years ago
Other questions:
  • Solve this equation <br> h(t)= -16t+175t+500
    14·1 answer
  • Which undefined term is used to define an angle
    7·2 answers
  • Franco Jardin earns $7 an hour at his part time job last week he worked 16 hours what was his Gross pay for the week?
    5·2 answers
  • What’s the area of this figure
    9·1 answer
  • Write a function rule for the table.
    14·2 answers
  • Write an equation of the line that passes through the points (1,4) and (2,7)
    5·1 answer
  • The equation x ^ 2 - 2x + y ^ 2 - 4y = 20 defines a circle in the xy-coordinate plane What is the radius of the circle?
    7·1 answer
  • PLEASE FIND THE DIMENSIONS OF THESE NOT THE TOTAL AREA giving BRAINLIEST
    5·1 answer
  • 2.
    9·1 answer
  • Busi has a bag containing 20 balls. There are twice as much yellow balls than blue balls, but yellow balls are only a third of r
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!