Answer:
The sample size required is 2500.
Step-by-step explanation:
z-score:
In function of the margin of error M, the z-score is given by:

In this question, we have that:

So






The sample size required is 2500.
Answer:
C. cos 20/29
Step-by-step explanation:
Cosine is adjacent over hypotenuse, like SohCahToa. Therefore, 20 is the adjacent side and 29 is the hypotenuse (hypotenuse is always the longest side).
Answer:
Any [a,b] that does NOT include the x-value 3 in it.
Either an [a,b] entirely to the left of 3, or
an [a,b] entirely to the right of 3
Step-by-step explanation:
The intermediate value theorem requires for the function for which the intermediate value is calculated, to be continuous in a closed interval [a,b]. Therefore, for the graph of the function shown in your problem, the intermediate value theorem will apply as long as the interval [a,b] does NOT contain "3", which is the x-value where the function shows a discontinuity.
Then any [a,b] entirely to the left of 3 (that is any [a,b] where b < 3; or on the other hand any [a,b] completely to the right of 3 (that is any [a,b} where a > 3, will be fine for the intermediate value theorem to apply.
Answer:
The number of minutes advertisement should use is found.
x ≅ 12 mins
Step-by-step explanation:
(MISSING PART OF THE QUESTION: AVERAGE WAITING TIME = 2.5 MINUTES)
<h3 /><h3>Step 1</h3>
For such problems, we can use probability density function, in which probability is found out by taking integral of a function across an interval.
Probability Density Function is given by:

Consider the second function:

Where Average waiting time = μ = 2.5
The function f(t) becomes

<h3>Step 2</h3>
The manager wants to give free hamburgers to only 1% of her costumers, which means that probability of a costumer getting a free hamburger is 0.01
The probability that a costumer has to wait for more than x minutes is:

which is equal to 0.01
<h3>
Step 3</h3>
Solve the equation for x

Take natural log on both sides

<h3>Results</h3>
The costumer has to wait x = 11.53 mins ≅ 12 mins to get a free hamburger