My question is in the image
1 answer:
Answer:
13.2 miles
Step-by-step explanation:
To solve this, we will need to first solve for the base of the triangle and then use the information we find to solve for the shortest route.
(5.5 + 3.5)² + b² = 15²
9² + b² = 15²
81 + b² = 225
b² = 144
b = 12
Now that we know that the base is 12 miles, we can use that and the 5.5 miles in between Adamsburg and Chenoa to find the shortest route (hypotenuse).
5.5² + 12² = c²
30.25 + 144 = c²
174.25 = c²
13.2 ≈ c
Therefore, the shortest route from Chenoa to Robertsville is about 13.2 miles.
You might be interested in
A= 2(w l + h l + h w) = 224m^2
Answer:
first question:
range-22
IQR-13
second question:
range-26
IQR-15.5
I hope this helped bestie!
25% or 2/4 and to win one game 50% or 1/2
15/35 of her attempts were successful.