Answer: Gradient Wind
Explanation:
Gradient wind, is the wind that accounts for air flow along a curved trajectory. It is an extension of the concept of geostrophic wind; for example the wind assumed to move along straight and parallel isobars (lines of equal pressure). The gradient wind represents the actual wind better than the geostrophic wind, especially when both wind speed and trajectory curvature are large, because they are in hurricanes and jet streams.
Hi there!
Voltage in a series can be expressed by the following:

In words, the total voltage is equal to the sum of the individual voltage drops in a SERIES circuit.
We can solve for the total voltage:

(a) +9.30 kg m/s
The impulse exerted on an object is equal to its change in momentum:

where
m is the mass of the object
is the change in velocity of the object, with
v = final velocity
u = initial velocity
For the volleyball in this problem:
m = 0.272 kg
u = -12.6 m/s
v = +21.6 m/s
So the impulse is

(b) 155 N
The impulse can also be rewritten as

where
F is the force exerted on the volleyball (which is equal and opposite to the force exerted by the volleyball on the fist of the player, according to Newton's third law)
is the duration of the collision
In this situation, we have

So we can re-arrange the equation to find the magnitude of the average force:

An electric circuit is anything in which electric current flows. Typically it refers to things with wiring like the electronics in your phone, but it can be made of anything that conducts electricity.
Say you have a battery, it basically has a bunch of electrons under a potential (think of gas in a tank under pressure), but the only way for the electrons to move is to move through a conductor, which are molecules with loosely held electrons. If you take a copper wire and touch each end to the two terminals you’ve completed an electric circuit because the electrons can now flow. But you can also put things partway through the wire like a lightbulb, which when the electrons run through it generates light.