1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
rjkz [21]
3 years ago
10

How to find an area of a diagram

Mathematics
1 answer:
ioda3 years ago
3 0

Answer:

The simplest (and most commonly used) area calculations are for squares and rectangles. To find the area of a rectangle, multiply its height by its width. For a square you only need to find the length of one of the sides (as each side is the same length) and then multiply this by itself to find the area.

Step-by-step explanation:

You might be interested in
. A box in a certain supply room contains four 40-W lightbulbs, five 60-W bulbs, and six 75-W bulbs. Suppose that three bulbs ar
yaroslaw [1]

Answer:

a) 59.34%

b) 44.82%

c) 26.37%

d) 4.19%

Step-by-step explanation:

(a)

There are in total <em>4+5+6 = 15 bulbs</em>. If we want to select 3 randomly there are  K ways of doing this, where K is the<em> combination of 15 elements taken 3 at a time </em>

K=\binom{15}{3}=\frac{15!}{3!(15-3)!}=\frac{15!}{3!12!}=\frac{15.14.13}{6}=455

As there are 9 non 75-W bulbs, by the fundamental rule of counting, there are 6*5*9 = 270 ways of selecting 3 bulbs with exactly two 75-W bulbs.

So, the probability of selecting exactly 2 bulbs of 75 W is

\frac{270}{455}=0.5934=59.34\%

(b)

The probability of selecting three 40-W bulbs is

\frac{4*3*2}{455}=0.0527=5.27\%

The probability of selecting three 60-W bulbs is

\frac{5*4*3}{455}=0.1318=13.18\%

The probability of selecting three 75-W bulbs is

\frac{6*5*4}{455}=0.2637=26.37\%

Since <em>the events are disjoint</em>, the probability of taking 3 bulbs of the same kind is the sum 0.0527+0.1318+0.2637 = 0.4482 = 44.82%

(c)

There are 6*5*4 ways of selecting one bulb of each type, so the probability of selecting 3 bulbs of each type is

\frac{6*5*4}{455}=0.2637=26.37\%

(d)

The probability that it is necessary to examine at least six bulbs until a 75-W bulb is found, <em>supposing there is no replacement</em>, is the same as the probability of taking 5 bulbs one after another without replacement and none of them is 75-W.

As there are 15 bulbs and 9 of them are not 75-W, the probability a non 75-W bulb is \frac{9}{15}=0.6

Since there are no replacement, the probability of taking a second non 75-W bulb is now \frac{8}{14}=0.5714

Following this procedure 5 times, we find the probabilities

\frac{9}{15},\frac{8}{14},\frac{7}{13},\frac{6}{12},\frac{5}{11}

which are

0.6, 0.5714, 0.5384, 0.5, 0.4545

As the events are independent, the probability of choosing 5 non 75-W bulbs is the product

0.6*0.5714*0.5384*0.5*0.4545 = 0.0419 = 4.19%

3 0
3 years ago
There are 5 more than twice as many students taking Algebra 1 than taking Algebra 2. If there are 44 students taking Algebra 2,
natima [27]

Answer: 54

Step-by-step explanation:

6 0
3 years ago
Brainlest and points need help !!
inn [45]

Answer:

it is C.

Step-by-step explanation:

8 people take up one table and 104/13=8

3 0
3 years ago
Read 2 more answers
A prticular type of tennis racket comes in a midsize versionand an oversize version. sixty percent of all customers at acertain
svetlana [45]

Answer:

a) P(x≥6)=0.633

b) P(4≤x≤8)=0.8989 (one standard deviation from the mean).

c) P(x≤7)=0.8328

Step-by-step explanation:

a) We can model this a binomial experiment. The probability of success p is the proportion of customers that prefer the oversize version (p=0.60).

The number of trials is n=10, as they select 10 randomly customers.

We have to calculate the probability that at least 6 out of 10 prefer the oversize version.

This can be calculated using the binomial expression:

P(x\geq6)=\sum_{k=6}^{10}P(k)=P(6)+P(7)+P(8)+P(9)+P(10)\\\\\\P(x=6) = \binom{10}{6} p^{6}q^{4}=210*0.0467*0.0256=0.2508\\\\P(x=7) = \binom{10}{7} p^{7}q^{3}=120*0.028*0.064=0.215\\\\P(x=8) = \binom{10}{8} p^{8}q^{2}=45*0.0168*0.16=0.1209\\\\P(x=9) = \binom{10}{9} p^{9}q^{1}=10*0.0101*0.4=0.0403\\\\P(x=10) = \binom{10}{10} p^{10}q^{0}=1*0.006*1=0.006\\\\\\P(x\geq6)=0.2508+0.215+0.1209+0.0403+0.006=0.633

b) We first have to calculate the standard deviation from the mean of the binomial distribution. This is expressed as:

\sigma=\sqrt{np(1-p)}=\sqrt{10*0.6*0.4}=\sqrt{2.4}=1.55

The mean of this distribution is:

\mu=np=10*0.6=6

As this is a discrete distribution, we have to use integer values for the random variable. We will approximate both values for the bound of the interval.

LL=\mu-\sigma=6-1.55=4.45\approx4\\\\UL=\mu+\sigma=6+1.55=7.55\approx8

The probability of having between 4 and 8 customers choosing the oversize version is:

P(4\leq x\leq 8)=\sum_{k=4}^8P(k)=P(4)+P(5)+P(6)+P(7)+P(8)\\\\\\P(x=4) = \binom{10}{4} p^{4}q^{6}=210*0.1296*0.0041=0.1115\\\\P(x=5) = \binom{10}{5} p^{5}q^{5}=252*0.0778*0.0102=0.2007\\\\P(x=6) = \binom{10}{6} p^{6}q^{4}=210*0.0467*0.0256=0.2508\\\\P(x=7) = \binom{10}{7} p^{7}q^{3}=120*0.028*0.064=0.215\\\\P(x=8) = \binom{10}{8} p^{8}q^{2}=45*0.0168*0.16=0.1209\\\\\\P(4\leq x\leq 8)=0.1115+0.2007+0.2508+0.215+0.1209=0.8989

c. The probability that all of the next ten customers who want this racket can get the version they want from current stock means that at most 7 customers pick the oversize version.

Then, we have to calculate P(x≤7). We will, for simplicity, calculate this probability substracting P(x>7) from 1.

P(x\leq7)=1-\sum_{k=8}^{10}P(k)=1-(P(8)+P(9)+P(10))\\\\\\P(x=8) = \binom{10}{8} p^{8}q^{2}=45*0.0168*0.16=0.1209\\\\P(x=9) = \binom{10}{9} p^{9}q^{1}=10*0.0101*0.4=0.0403\\\\P(x=10) = \binom{10}{10} p^{10}q^{0}=1*0.006*1=0.006\\\\\\P(x\leq 7)=1-(0.1209+0.0403+0.006)=1-0.1672=0.8328

7 0
3 years ago
Plz help me answer idknow
AleksandrR [38]

Let the number total slices = x

He ate (1/4) x

He has x - 1/4 x = 3/4 x slices left.

Each one of these slices is cut into 1/8s

T (total number of slices) = 8 * (3/4x)

T = (8*3/4) x

T = (24/4)x

T = 6x slices.


3 0
3 years ago
Other questions:
  • Raising any base to the power of zero will yield?
    7·1 answer
  • Heather's fish tank has 18 liters of water in it. she plans to add 4 liters per minute until the tank has more than 58 liters. w
    12·1 answer
  • 1234567891011121314151617181920
    7·2 answers
  • I need help on this I forgot how to do the work, answer please?
    8·1 answer
  • The same couple, what is the probability that if they have three children, two will be boys and one will be a
    9·1 answer
  • Suppose that 11% of all steel shafts produced by a certain process are nonconforming but can be reworked (rather than having to
    8·1 answer
  • What can you determine from the tape diagram
    9·1 answer
  • Help asap thank you!!
    5·2 answers
  • The graph shows how many apples Erin can pick if she maintains a constant rate. What is the linear equation for this relationshi
    15·2 answers
  • If A = 2/3,B =0.4,C = - 2 1/5, D= 4 1/2 how far is 0 from C
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!